Logic Homework for Lecture III

Max Schäfer

Please answer as many of the following questions as you can, in Chinese or English, on the provided answer sheet and hand it to me on or before **July 10**, **2008**. No delayed submissions will be accepted.

Do not feel pressured to complete *all* questions. The grading of your homework will not be based on how many questions you solved, but on how well you did compared with your classmates.

1 Logic, Semantics, and Deductive Systems

Show that

- $\vdash_{\mathrm{NJ}} \neg \neg \neg \neg P \rightarrow \neg \neg P$ for any propositional letter P.
- $u: \neg \neg \varphi \rightarrow \varphi, v: \neg \neg \psi \rightarrow \psi \vdash_{NJ} \neg \neg (\varphi \land \psi) \rightarrow \varphi \land \psi$
- Compute (((P → Q) → P) → P)*.
 Bonus: Show that ⊢_{NJ} (((P → Q) → P) → P)*

2 Proof Normalization (Bonus)

Recall the Church encoding of natural numbers as lambda terms: The number n is encoded as the term $\lambda s \colon A \to A \cdot \lambda z \colon A \cdot s^n z$, where $s^n z$ represents the *n*-fold application of s to z (for details, see Dr. Chen's lecture notes).

The successor function ${\cal S}$ for Church numerals can be implemented by the lambda term

$$\lambda x \colon (A \to A) \to A \to A.\lambda s \colon A \to A.\lambda z \colon A.x \, s \, (s \, z)$$

Give a derivation corresponding to the term S0 and normalize it. What proof term does the resulting derivation correspond to?

3 Curry-Howard

Show that there is no simply typed lambda term M such that $\vdash M \colon (A \to A) \to A$.