
2008 Formosan Summer School on Logic, Language, and Computation

Program Construction and Reasoning

Exercises for Day 2

Shin-Cheng Mu

July 7th, 2008

1 In-Class Exercises

1.1 Folds and Fold-Fusion

1. Given functions f :: α → β and g :: α → γ, split f g :: α → (β, γ) is a
function defined by:

split f g a = (f a, g a).

Recall the definition of steep and sum. The definition of steepsum can be
re-written as:

steepsum = split steep sum.

Also recall that the identity function id on lists is a fold: id = foldr (:) [].
Use the fold-fusion theorem to fuse steepsum · id into one fold.
Ans:
We reason:

steepsum
= { since f = f · id }

steepsum · id
= { since id = foldr (:) [] }

steepsum · foldr (:) []
= { foldr -fusion, see below }

foldr step (true, 0).

To perform foldr -fusion, we construct a function step such that:

steepsum ((:) x xs) = step x (steepsum xs).

1

We reason:

steepsum (x :xs)
= { def. of steepsum and split }

(steep (x :xs), sum (x :xs))
= { def. of steep and sum }

(steep xs ∧ x > sum xs, x + sum xs)
= { introducing local identifiers }

let (st , ss) = (steep xs, sum xs)
in (st ∧ x > ss, x + ss)

= { let step x (st , ss) = (st ∧ x > ss, x + ss) }
step x (steep xs, sum xs)

= { def. of steepsum }
step x (steepsum xs).

We have thus derived:

steepsum = foldr step (true, 0)
where step x (st , ss) = (st ∧ x > ss, x + ss).

2. Recall the definition of scanr from the lecture:

scanr f e = map (foldr f e) · tails

and its implementation as a fold:

scanr f e = foldr (sc f) [e]
where sc f x (y :ys) = f x y : y : ys

(a) Expand scanr (+) 0 [1, 2, 3] step by step:

scanr (+) 0 [1, 2, 3]
= foldr (sc (+)) [0] [1, 2, 3]
= . . .

Ans:

= sc (+) 1 (foldr (sc (+)) [0] [2, 3])
= sc (+) 1 (sc (+) 2 (foldr (sc (+)) [0] [3]))
= sc (+) 1 (sc (+) 2 (sc (+) 3 (foldr (sc (+)) [0] [])))
= sc (+) 1 (sc (+) 2 (sc (+) 3 [0]))
= sc (+) 1 (sc (+) 2 [3, 0])
= sc (+) 1 [5, 3, 0]
= [6, 5, 3, 0]

2

(b) Derive the implementation of scanr f e by fusing map (foldr f e)·tails
into one fold.
Ans:

map (foldr f e) · tails
= { since tails is a fold }

map (foldr f e) · foldr til [[]]
= { foldr -fusion, see below }

foldr (sc f) [[e]].

Recall the definition of til :

til x (ys:yss) = (x : ys) : ys : yss.

This fusion condition is proved below:

map (foldr f e) (til x (ys : yss))
= { def. of til }

map (foldr f e) ((x : ys) : ys : yss)
= { def. of map }

foldr f e (x : ys) : foldr f e ys : map (foldr f e) yss
= { def. of foldr }

f x (foldr f e ys) : foldr f e ys : map (foldr f e) yss
= { introducing local identifiers }

let (ys, yss) = (foldr f e ys,map (foldr f e) yss)
in f x ys: ys: yss

= { let sc f x (ys:yss) = f x ys : ys : yss }
sc f x (fold f e ys : map (foldr f e) yss)

= { def. of map }
sc f x (map (foldr f e) (ys : yss)).

We have therefore derived:

scanr f e = foldr (sc f) [[e]],

where sc f x (ys:yss) = f x ys : ys : yss.

2 Take-Home Exercise (Due Date: July 10th)

You do not have to do the exercises below if you have completed any of the
exercises from Day 1. Exercise 1 is worth 40 points while exercise 2 is worth 50
points.

1. The function filter p selects from a list all elements satisfying a predicate
p. For example, filter even [1, 2, 3, 4] = [2, 4].

3

(a) Give a recursive definition of filter :

filter p [] = . . .
filter p (x :xs) = . . .

(b) Define filter p in terms of foldr .

(c) Prove, by fold-fusion, that

filter p ·map f = map f · filter (p · f).

Hint: apply fold-fusion on both sides, and show that they are equal
to the same fold.

2. Given two functions h1 and h2, the function split h1 h2 computes the pair
of their results:

split h1 h2 xs = (h1 xs, h2 xs).

In the special case when both h1 and h2 are defined by foldr :

h1 = foldr f1 e1,
h2 = foldr f2 e2,

the following “banana-split” rule allows us to express split h1 h2 using one
single foldr :

split h1 h2 = foldr g (e1, e2),
where g x (y , z) = (f1 x y , f2 x z).

It optimises two traversal through the list to only one traversal. It is
called “banana-split” because folds used to be written using a notation
called “banana brackets”.

(a) The function split sum length return the pair of sum and length of
the input list. Use the banana-split rule to express split sum length
by a fold.

(b) Prove the banana-split rule by fold fusion. Hint: recall that split h1 h2 =
split h1 h2 · id , and id is a fold.

4

