
2008 Formosan Summer School on Logic, Language, and Computation

Program Construction and Reasoning

Exercises for Day 2

Shin-Cheng Mu

July 7th, 2008

1 In-Class Exercises

1.1 Folds and Fold-Fusion

1. Given functions f :: α → β and g :: α → γ, split f g :: α → (β, γ) is a
function defined by:

split f g a = (f a, g a).

Recall the definition of steep and sum. The definition of steepsum can be
re-written as:

steepsum = split steep sum.

Also recall that the identity function id on lists is a fold: id = foldr (:) [].
Use the fold-fusion theorem to fuse steepsum · id into one fold.
Ans:
We reason:

steepsum
= { since f = f · id }

steepsum · id
= { since id = foldr (:) [] }

steepsum · foldr (:) []
= { foldr -fusion, see below }

foldr step (true, 0).

To perform foldr -fusion, we construct a function step such that:

steepsum ((:) x xs) = step x (steepsum xs).

1

We reason:

steepsum (x :xs)
= { def. of steepsum and split }

(steep (x :xs), sum (x :xs))
= { def. of steep and sum }

(steep xs ∧ x > sum xs, x + sum xs)
= { introducing local identifiers }

let (st , ss) = (steep xs, sum xs)
in (st ∧ x > ss, x + ss)

= { let step x (st , ss) = (st ∧ x > ss, x + ss) }
step x (steep xs, sum xs)

= { def. of steepsum }
step x (steepsum xs).

We have thus derived:

steepsum = foldr step (true, 0)
where step x (st , ss) = (st ∧ x > ss, x + ss).

2. Recall the definition of scanr from the lecture:

scanr f e = map (foldr f e) · tails

and its implementation as a fold:

scanr f e = foldr (sc f) [e]
where sc f x (y :ys) = f x y : y : ys

(a) Expand scanr (+) 0 [1, 2, 3] step by step:

scanr (+) 0 [1, 2, 3]
= foldr (sc (+)) [0] [1, 2, 3]
= . . .

Ans:

= sc (+) 1 (foldr (sc (+)) [0] [2, 3])
= sc (+) 1 (sc (+) 2 (foldr (sc (+)) [0] [3]))
= sc (+) 1 (sc (+) 2 (sc (+) 3 (foldr (sc (+)) [0] [])))
= sc (+) 1 (sc (+) 2 (sc (+) 3 [0]))
= sc (+) 1 (sc (+) 2 [3, 0])
= sc (+) 1 [5, 3, 0]
= [6, 5, 3, 0]

2

(b) Derive the implementation of scanr f e by fusing map (foldr f e)·tails
into one fold.
Ans:

map (foldr f e) · tails
= { since tails is a fold }

map (foldr f e) · foldr til [[]]
= { foldr -fusion, see below }

foldr (sc f) [[e]].

Recall the definition of til :

til x (ys:yss) = (x : ys) : ys : yss.

This fusion condition is proved below:

map (foldr f e) (til x (ys : yss))
= { def. of til }

map (foldr f e) ((x : ys) : ys : yss)
= { def. of map }

foldr f e (x : ys) : foldr f e ys : map (foldr f e) yss
= { def. of foldr }

f x (foldr f e ys) : foldr f e ys : map (foldr f e) yss
= { introducing local identifiers }

let (ys, yss) = (foldr f e ys,map (foldr f e) yss)
in f x ys: ys: yss

= { let sc f x (ys:yss) = f x ys : ys : yss }
sc f x (fold f e ys : map (foldr f e) yss)

= { def. of map }
sc f x (map (foldr f e) (ys : yss)).

We have therefore derived:

scanr f e = foldr (sc f) [[e]],

where sc f x (ys:yss) = f x ys : ys : yss.

2 Take-Home Exercise (Due Date: July 10th)

You do not have to do the exercises below if you have completed any of the
exercises from Day 1. Exercise 1 is worth 40 points while exercise 2 is worth 50
points.

1. The function filter p selects from a list all elements satisfying a predicate
p. For example, filter even [1, 2, 3, 4] = [2, 4].

3

(a) Give a recursive definition of filter :

filter p [] = . . .
filter p (x :xs) = . . .

Ans:

filter p [] = []
fliter p (x :xs) = if p x then x :filter p xs else filter p xs

(b) Define filter p in terms of foldr .
Ans:

fliter p xs = foldr (flt p) [] xs
flt p x ys = if p x then x :ys else ys

(c) Prove, by fold-fusion, that

filter p ·map f = map f · filter (p · f).

Hint: apply fold-fusion on both sides, and show that they are equal
to the same fold.
Ans:
Consider the left-hand side:

filter p ·map f
= { since map is a fold }

filter p · foldr mp [] where mp x xs = f x :xs

We now attempt to construct a function fltf that satisfies the fusion
condition:

filter p (mf f x xs) = fltf x (filter p xs)

We reason:

fliter p (f x :xs)
= { def. of filter }

let ys = filter p xs in if p (f x) then f x :ys else ys
= { let fltf x ys = if p (f x) then f x :ys else ys }

fltf x (filter p xs)

We have thus shown that:

filter p ·map f = foldr fltf (filter p []) = foldr fltf []

where fltf is defined by fltf x ys = if p (f x) then f x :ys else ys.

Now consider the right-hand side:

map f · filter (p · f)
= { write fliter as a fold }

4

map f · foldr (fltf (p · f)) []
= { fold fusion (see below) and map f [] = [] }

foldr fltf []

This fold fusion condition is proved below:

map f (fltf x ys)
= { def. of fltf }

map f (if p (f x) then x :ys else ys)
= { since map distributes into if }

if p x then map f (x :ys) else map f ys
= { def. of map }

if p (f x) then f x : map f ys else map f ys
= { def. of fltf }

fltf x (map f ys)

2. Given two functions h1 and h2, the function split h1 h2 computes the pair
of their results:

split h1 h2 xs = (h1 xs, h2 xs).

In the special case when both h1 and h2 are defined by foldr :

h1 = foldr f1 e1,
h2 = foldr f2 e2,

the following “banana-split” rule allows us to express split h1 h2 using one
single foldr :

split h1 h2 = foldr g (e1, e2),
where g x (y , z) = (f1 x y , f2 x z).

It optimises two traversal through the list to only one traversal. It is
called “banana-split” because folds used to be written using a notation
called “banana brackets”.

(a) The function split sum length return the pair of sum and length of
the input list. Use the banana-split rule to express split sum length
by a fold.
Ans:
Since

sum = foldr (+) 0
length = foldr (λx z . (z + 1)) 0

5

let f1 = (+), f2 = (λx z . (z + 1)), e1 = e2 = 0, we have:

split sum length = foldr g (0, 0)
g x (y , z) = (x + y , z + 1)

(b) Prove the banana-split rule by fold fusion. Hint: recall that split h1 h2 =
split h1 h2 · id , and id is a fold.
Ans:

split h1 h2 = split h1 h2 · id
= { write id as a fold }

split h1 h2 · foldr (:) []

Now we try to fuse split h1 h2 · foldr (:) [] into one fold. We have to
show that g satisfies:

split h1 h2 ((:) x xs) = g x (split h1 h2 xs)

which is proved below:

split h1 h2 (x :xs)
= { def. of split · · }

(h1 (x :xs), h2 (x :xs))
= { def. of h1 and h2 }

(foldr f1 e1 (x :xs), foldr f2 e2 (x :xs))
= { def. of foldr }

(f1 x (foldr f1 e1 xs), f2 x (foldr f2 e2 xs))
= { by def., g x (y , z) = (f1 x y , f2 x z) }

g x (foldr f1 e1 xs, foldr f2 e2 xs)
= { def. of h1 and h2 }

g x (h1 xs, h2 xs)
= { def. of split · · }

g x (split h1 h2 xs)

Back to split h1 h2:

split h1 h2

= { reasoning above }
foldr g (split h1 h2 [])

= { def. of h1, h2 }
foldr g (e1, e2)

6

