Model Checking, Temporal Logic, and Automata Theory

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

July 12, 2007

Introduction

• Consider the Needham-Schröder Authentication Protocol

$$\begin{array}{cccc} A & \stackrel{\{A,N_A\}_{K_B}}{\longrightarrow} & B \\ A & \stackrel{\{N_A,N_B\}_{K_A}}{\longleftarrow} & B \\ A & \stackrel{\{N_B\}_{K_B}}{\longrightarrow} & B \end{array}$$

- How do you know the protocol is "correct?"
 - Prove it by hand
 - sometimes it is very tedious and thus error-prone
 - Verify it by machine
 - Let's do it!

Introduction (cont'd)

• Here is the buggy trace found by OMOCHA

Introduction (cont'd)

- Generally, it is undecidable to verify an arbitray property on an arbitrary algorithm
- Model checking hence focuses on verifying limited classes of properties on restricted computation models
 - linear temporal logic, computational tree logic, μ -calculus
 - finite-state automata, pushdown automata, Petri nets
- In this lecture, we will discuss automatic verification of linear temporal logic and computational tree logic on finite-state automata
- Moreover, you will have a chance to use tools to verify some protocols automatically

Relation to Other Topics

- from logic to temporal logic
- "realistic" functional programming
- applying type system

Outline

- Temporal Logic
 - Linear Temporal Logic

• Computatoinal Tree Logic

- 2 Automata Theory
 - Finite-State Automata for Finite Strings
 - Finite-State Automata for Infinite Strings
- 3 LTL Model Checking
 - From LTL to Büchi Automata
 - Language Containment
- 4 CTL Model Checking
 - Explicit-State Model Checking
 - Symbolic Model Checking
 - Bounded Model Checking
 - Induction

Kripke Structures

- Q is a set of *states*;
- $Q_0 \subseteq Q$ is the set of *initial states*;
- $\delta \subseteq Q \times Q$ is a (total) *transition relation*;

•
$$L: Q \rightarrow 2^{A}$$

- As usual, we write $q \longrightarrow q'$ for $(q,q') \in \delta$
- A computation path from q is an infinite sequence of states π = p₀p₁ ··· p_n ··· with p₀ = q and p_i → p_{i+1} for 0 ≤ i
- Define $\pi(i) = p_i p_{i+1} \cdots$

Linear Temporal Logic – Syntax

- An atomic proposition is an LTL formula
- If f and g are LTL formulae
 - $\neg f$ and $f \lor g$ are LTL formuae
 - fUg is an LTL formula

Linear Temporal Logic – Semantics

- Let $K = (Q, Q_0, \delta, L)$ be a Kripke structure.
- Given a computation path π = p₀p₁ ··· p_n ··· and an LTL formula f, define the satisfaction relation K, π ⊨ f by

•
$$K, \pi \models ap$$
 if $ap \in L(p_0)$

- $K, \pi \models \neg f$ if not $K, \pi \models f$
- $K, \pi \models f \lor g$ if $K, \pi \models f$ or $K, \pi \models g$
- $K, \pi \models \mathbf{X}f$ if $K, \pi(1) \models f$
- $K, \pi \models f \mathbf{U}g$ if there is a $k \ge 0$ such that $K, \pi(k) \models g$ and $K, \pi(j) \models f$ for $0 \le j < k$
- We will use the following abbreviation

$$\begin{array}{rcl} f \wedge g &\equiv \neg (\neg f \vee \neg g) & \mathsf{F}f &\equiv \mathsf{true}\mathsf{U}f \\ \mathsf{G}f &\equiv \neg \mathsf{F}\neg f \end{array}$$

Linear Temporal Logic – in Plain English

- $K, \pi \models ap$: *ap* holds initially
- $K, \pi \models \mathbf{X}f$: f holds at next position
- $K, \pi \models f \mathbf{U}g$: f holds until g holds
- $K, \pi \models \mathbf{F}f$: f holds eventually
- $K, \pi \models \mathbf{G}f$: f always holds

Computational Tree Logic – Syntax

- An atomic proposition is a CTL formula
- If f and g are CTL formulae
 - $\neg f$ and $f \lor g$ are CTL formuae
 - $\mathbf{A}(f\mathbf{U}g)$ and $\mathbf{E}(f\mathbf{U}g)$ are CTL formulae

Computational Tree Logic – Semantics

- Let $K = (Q, Q_0, \delta, L)$ be a Kripke structure.
- Given a state q ∈ Q and a CTL formula f, define the satisfaction relation K, q ⊨ f as follows
 - $K, q \models ap$ if $ap \in L(q)$
 - $K, q \models \neg f$ if not $K, q \models f$
 - $K, q \models f \lor g$ if $K, q \models f$ or $K, q \models g$
 - $K, q \models \mathsf{EX} f$ if $K, q' \models f$ for some q' with $q \rightarrow q'$
 - $K, q \models \mathbf{A}(f\mathbf{U}g)$ if $K, \pi \models f\mathbf{U}g$ for all computation path π from q
 - $K, q \models \mathbf{E}(f \mathbf{U}g)$ if $K, \pi \models f \mathbf{U}g$ for some computation path π from q
- We will use the following abbreviation

$$\begin{array}{rcl} \mathbf{A}\mathbf{X}f &\equiv \neg \mathbf{E}\mathbf{X}\neg f & \mathbf{A}\mathbf{F}f &\equiv \mathbf{A}(\mathsf{true}\mathbf{U}f) \\ \mathbf{E}\mathbf{F}f &\equiv \mathbf{E}(\mathsf{true}\mathbf{U}f) & \mathbf{A}\mathbf{G}f &\equiv \neg \mathbf{E}\mathbf{F}\neg f \\ \mathbf{E}\mathbf{G}f &\equiv \neg \mathbf{A}\mathbf{F}\neg f \end{array}$$

Computational Tree Logic - in Plain English

- $K, q \models ap$: ap holds at q
- $K, q \models \mathsf{AX}f$: f holds at the next position in all paths
- $K, q \models \mathsf{EX} f$: f holds at the next position in some paths
- $K, q \models \mathsf{AF}f$: f holds for all paths from q eventually
- $K, q \models \mathbf{EF} f$: f holds for some path from q eventually
- $K, q \models \mathbf{AG}f$: f always holds for all paths from q
- $K, q \models \mathbf{EG}f$: f always holds for some path from q
- $K, q \models \mathbf{A}(f \mathbf{U}g)$: f holds until g holds for all paths from q
- $K, q \models E(fUg)$: f holds until g holds for some path from q

Basic Properties

• LTL and CTL are not comparable

• There is a property on some Kripke structure, which is expressible by LTL but not CTL and vice versa

- **FG***a* holds for all computation paths from q_0
- but **AFAG***a* does not hold on q_0

Automata Theory

- Finite State Automata and Regular Languages
 - a simple model accepts finite strings
- $\bullet \ \omega\textsc{-}Automata$ and $\omega\textsc{-}Regular$ Languages
 - an extension of simple model accepts infinite strings

- Consider a set of alphabets Σ
- A string α is a finite sequence of symbols a₁a₂ ··· a_n
 a, abc, verification, ...
- The *length* of a string $\alpha = a_1 a_2 \cdots a_n$ is *n*
- The string of length 0 is called *empty string* and denoted by ϵ
- $\bullet\,$ The set of all strings over Σ is denoted by Σ^*
- A subset of Σ^{*} is called a *language*

Finite State Automata

- Σ is a finite set of *alphabets*;
- Q is a finite set of *states*;
- $Q_0 \subseteq Q$ is the set of *initial states*;
- $\delta \subseteq Q \times \Sigma \times Q$ is a (total) *transition relation*; and
- $F \subseteq Q$ is a set of *final states*.
- We will write $q \stackrel{a}{\longrightarrow} q'$ for $(q, a, q') \in \delta$
- If $|Q_0| = 1$ and δ is in fact a function from $Q \times \Sigma$ to Q, we say the automaton is *deterministic*

Runs and Acceptance

- Let M = (Σ, Q, Q₀, δ, F) be a finite state automaton and α = a₁a₂ ··· a_n
- A run for α on M is a squence of states $p_0p_1\cdots p_n$ such that

•
$$p_0 \in Q_0;$$

•
$$p_i \stackrel{a_i}{\longrightarrow} p_{i+1}$$
 for $0 \leq i < n$

- The set of runs for α on M is denoted by $Run_M(\alpha)$
- The string α is *accepted* by M if there is a run $p_0p_1 \cdots p_n \in Run_M(\alpha)$ such that $p_n \in F$
- The language accepted by M is denoted by L(M)

Basic Properties

- Nondeterminism does not increase expressiveness
 - A language is accepted by a deterministic finite state automaton if and only if it is accepted by a nondeterministic finite state automaton
- The class of languages accepted by finite state automaton is the class of regular languages
 - RR', R + R', R^* , \overline{R}

Infinite Strings and Languages

- An ω -string σ is an infinite sequence of symbols $s_1 s_2 \cdots s_n \cdots$
 - aa····, 0100011011····, ...
- $\bullet\,$ The set of all $\omega\text{-strings}$ over Σ is denoted by Σ^ω
- A subset of Σ^{ω} is called an ω -language

- How to make finite state automata accept ω-strings?
- $M = (\Sigma, Q, Q_0, \delta, F)$: a finite state automaton
- A run for σ = s₁s₂ ··· s_n ··· on M is an infinite sequence of states p₁p₂ ··· p_n ··· such that
 - $p_0 \in Q_0$
 - $p_i \xrightarrow{s_i} p_{i+1}$ for $0 \leq i$
- How to define acceptance?
 - There is no "last" state in an infinite run

Acceptance for ω -Strings

- Let $\sigma = s_1 s_2 \cdots s_n \cdots$ be an ω -string and $B = (\Sigma, Q, Q_0, \delta, F)$ a finite state automaton
- A run r for σ on B is an infinite sequence of states $p_1p_2\cdots p_n\cdots$ such that

•
$$p_0 \in Q_0$$

•
$$p_i \xrightarrow{s_i} p_{i+1}$$
 for $0 \leq i$

- Define $Inf_B(r)$ to be the set of states which occur infinitely many times in r
- The Büchi acceptance condition for a run r requires $Inf_B(r) \cap F \neq \emptyset$
- An ω-string σ is accepted by B if there is an r ∈ Run_B(σ) satisfying the Büchi acceptance condition
- A finite state automaton using the Büchi acceptance condition is called a *Büchi automaton*

Basic Properties

- Deterministic Büchi automata is strictly less expressive than nondeterministic ones
 - The language {σ : σ contains finitely many a's} is accepted by a nondeterministic Büchi automaton but not by any deterministic Büchi automaton.

Basic Properties (cont'd)

Proof.

Suppose there is a deterministic Büchi automaton $B = (\Sigma, Q, \{q_0\}, \delta, F)$ accepting the same language. Then there is an n_0 such that $q_0 \xrightarrow{b^{n_0}} q$ for some $q \in F$. Otherwise, B would not accept b^{ω} , a contradiction. Similarly, there must be an n_1 such that $q_0 \xrightarrow{b^{n_1} a b^{n_1}} q$ for some $q \in F$. Hence there are $n_0, n_1, \ldots, n_m, \ldots$ such that

$$q_0 \stackrel{b^{n_0}ab^{n_1}\cdots ab^{n_m}}{\longrightarrow} q$$

for some $q \in F$. But the ω -string $b^{n_0}ab^{n_1}\cdots ab^{n_m}\cdots$ contains infinitely many a's.

Generalized Büchi Automata

- A generalized Büchi Automaton B = (Σ, Q, Q₀, δ, F) consists of
 - Σ , a finite set of *alphabets*
 - Q, a finite set of *states*
 - $Q_0 \subseteq Q$, the set of *initial states*
 - $\delta \subseteq Q \times \Sigma \times Q$, the transition relation
 - $\mathcal{F} \subseteq 2^Q$, a finite class of *accepting sets*
- The generalized Büchi acceptance condition for a run r requires Inf_B(r) ∩ F ≠ Ø for all F ∈ F
- An ω-string σ is accepted by B if there is an r ∈ Run_B(σ) satisfying the generalized Büchi acceptance condition
- A finite state automaton using the generalized Büchi acceptance condition is called a *generalized Büchi automaton*

Expressive Power of Generalized Büchi Automata

- Let B = (Σ, Q, Q₀, δ, F) be a Büchi automaton. It is easy to see that G_B = (Σ, Q, Q₀, δ, {F}) is a generalized Büchi automaton accepting the same language
- Conversely, let $G = (\Sigma, Q, Q_0, \delta, \mathcal{F})$ be a generalized Büchi automaton with $\mathcal{F} = \{F_0, F_1, \dots, F_{n-1}\}$
- Construct $B_G = (\Sigma, Q \times \mathbb{N}, Q_0 \times \{0\}, \delta', Q \times \{0\})$ as follows
 - $((q, m), s, (q', m')) \in \delta'$ if and only if

•
$$(q, s, q') \in \delta$$

• $m' = \begin{cases} m & \text{if } q' \notin F_m \\ m+1 \mod n & \text{if } q' \in F_m \end{cases}$

- Intuitively, we iterate through all accepting sets by a counter
- A run visits all accepting sets infinitely many times if and only if the counter resets to 0 infinitely many times
- Büchi automata have the same expressive power as generalized Büchi automata

LTL Model Checking Problem

- Let K = (Q, Q₀, δ, L) be a Kripke structure and f an LTL formula. We write K ⊨ f if K, π ⊨ f for all computation paths π from a state in Q₀
- Given a Kripke structure K = (Q, Q₀, δ, L) and an LTL formula f, the LTL model checking problem is to decide whether K ⊨ f

Automata-Theoretic Approach

- The idea is to reduce the LTL model checking problem to the language containment problem in automata theory
- Intuitively, we will
 - translate any Kripke structure to an automaton;
 - translate any LTL formula to another automaton;
 - check whether the language accepted by the former automaton is contained in the language accepted by the latter

From Kripke Structures to Büchi Automata

- Consider any Kripke structure $K = (Q, Q_0, \delta, L)$
- Let $\Sigma_{AP} = 2^{AP}$
- We will construct a Büchi automaton accepting a ω -language in Σ^{ω}_{AP}
- Define $B_K = (\Sigma_{AP}, Q \cup {\iota}, {\iota}, {\delta', Q})$
 - ι is a new state not in Q
 - $(q, s, q') \in \delta'$ if s = L(q') and $(q, s, q') \in \delta$
 - $(\iota, s_0, q_0) \in \delta'$ if $s_0 = L(q_0)$ and $q_0 \in Q_0$
- The alphabets are in fact the set of atomic propositions satisfied in the target state
- Any computation path in K corresponds to an ω-string over Σ_{AP} accepted by B_K and vice versa. Precisely,

 $L(B_{\mathcal{K}}) = \{L(\pi) : \pi \text{ is a computation path from } q_0 \in Q_0\}.$

From LTL to Büchi Automata

- For any LTL formula *f*, we would like to construct a Büchi automata *B_f* over Σ_{AP} accepting all ω-strings satisfying *f*
- Hence to check whether K, π ⊨ f for all π from some state in Q₀ is equivalent to checking L(B_K) ⊆ L(B_f)

Fischer-Ladner Closure

Let f be an LTL formula. The Fischer-Ladner closure C(f) is defined as follows (we identify ¬¬f' with f').

$$C(f) = \{f', \neg f' : f' \text{ is a subformula of } f\}$$

• For example,

$$C(a\mathbf{U}b) = \{a\mathbf{U}b, \neg(a\mathbf{U}b), a, \neg a, b, \neg b\}$$

Healthiness

- Let f be an LTL formula. A subset D of C(f) is healthy if it satisfies the following conditions
 - for all $f' \in C(f)$, either $f' \in D$ or $\neg f' \in D$;
 - if $f'_0 \vee f'_1 \in C(f)$, then $f'_0 \vee f'_1 \in D$ iff $f'_0 \in D$ or $f'_1 \in D$;
 - if $f' Ug' \in D$, then $g' \in D$ or $f' \in D$;
 - if $f' Ug' \in C(f) \notin D$, then $g' \notin D$.

Automaton $B_f = (\Sigma_{AP}, Q, Q_0, \delta, F)$

Baub

- $C(aUb) = \{aUb, \neg(aUb), a, \neg a, b, \neg b\}$
- All subsets are Ø, {a}, {b}, {aUb}, {a,b}, {a,aUb}, {b,aUb}, and {a, b, aUb} All subsets are Ø, {a}, {b}, {aUb}, {aUb}, {a, b}, {a,aUb}, {b,aUb}, and {a, b, aUb}
$B_{(a \cup b) \lor (\neg a \cup b)}$

- $C((aUb) \lor (\neg aUb)) = \{(aUb) \lor (\neg aUb), \neg((aUb) \lor (\neg aUb)), aUb, \neg(aUb), \neg aUb, \neg(\neg aUb), a, \neg a, b, \neg b\}$
- Healthy subsets are {}, {a}, {(aUb) ∨ (¬aUb), aUb, a}, {(aUb) ∨ (¬aUb), ¬aUb}, {(aUb) ∨ (¬aUb), aUb, ¬aUb, b}, {(aUb) ∨ (¬aUb), aUb, ¬aUb, a, b}
 Why is {(aUb) ∨ (¬aUb), aUb, ¬aUb, a, b} not healty?

Checking Language Containment

- For any LTL formula f, $L(B_f)$ contains all ω -strings over Σ_{AP} satisfying f
- For any Kripke structure K, L(B_K) contains all ω-strings over Σ_{AP} corresponding some computation path in K from an initial state
- It remains to check whether $L(B_K) \subseteq L(B_f)$
- Observe that $L(B_K) \subseteq L(B_f)$ if and only if $L(B_K) \cap \overline{L(B_f)} = \emptyset$

How to check $L(B_{\mathcal{K}}) \cap \overline{L(B_f)} = \emptyset$?

- How to compute $\overline{L(B_f)}$?
- How to check $L(B_K) \cap \overline{L(B_f)} = \emptyset$?

Computing $\overline{L(B_f)}$

- Let *M* be a finite state automaton. Its *complement* automaton, \overline{M} , is a finite state automaton such that $L(\overline{M}) = \overline{L(M)}$
 - determize M and change the accepting states
- Can we do it for Büchi automata?
- Not directly. Deterministic Büchi automata is strictly less expressive than Büchi automata
 - A more general deterministic ω -automata is required
 - Alas, it is rather complicated

Computing $\overline{L(B_f)}$ (cont'd)

- Fortunately, there is an easy way out
- Observe that a computation path π satisfies f if and only if it does not satisfy ¬f

• Hence
$$\overline{L(B_f)} = L(B_{\neg f})$$

• Complementation of Büchi automata is not needed!

Checking $L(B_0) \cap L(B_1) = \emptyset$

- Let M^0 and M^1 be finite state automata
- How to check $L(M^0) \cap L(M^1) = \emptyset$?
 - construct product automaton $M^0 \times M^1$ and check if $L(M^0 \times M^1) = \emptyset$
- Can we do it for Büchi automata?
- Yes!

Product Automata $B^0 \times B^1$

- Let $B^0 = (\Sigma, Q^0, Q_0^0, \delta^0, F^0)$ and $B^1 = (\Sigma, Q^1, Q_0^1, \delta^1, F^1)$ be Büchi automata
- Define $B^0 \times B^1$ as follows.
 - $\bullet~\Sigma$ is its alphabets
 - $Q^0 imes Q^1 imes \{0,1,2\}$ are its states
 - $Q_0^0 imes Q_0^1 imes \{0\}$ are the initial states
 - $Q^{0} \times Q^{1} \times \{2\}$ are the accepting states
 - Moreover $\langle p^0, r^1, x \rangle \stackrel{a}{\longrightarrow} \langle q^0, s^1, y \rangle$ if

•
$$p^{0} \xrightarrow{a}{\longrightarrow} q^{0}$$
 in B^{0} ;
• $r^{1} \xrightarrow{a}{\longrightarrow} s^{1}$ in B^{1} ; and
• $y = \begin{cases} 1 & \text{if } x = 0 \text{ and } q^{0} \in F^{0} \\ 2 & \text{if } x = 1 \text{ and } s^{1} \in F^{1} \\ 0 & \text{if } x = 2 \\ x & \text{otherwise} \end{cases}$

Example of Product Automata

Product Büchi Automaton

Automata-Theoretic LTL Model Checking Algorithm

- **(**) Construct B_K and $B_{\neg f}$ for K and $\neg f$ respectively
- **2** Check whether $L(B_K \times B_{\neg f}) = \emptyset$
 - $\bullet\,$ if so, return $P\!ASS$
 - otherwise, return FAIL

- Let K = (Q, Q₀, δ, L) be a Kripke structure and f a CTL formula. We write K ⊨ f if K, q₀ ⊨ f for all q₀ ∈ Q₀
- Given a Kripke structure K = (Q, Q₀, δ, L) and a CTL formula f, the CTL model checking problem is to decide whether K ⊨ f

Explicit-State CTL Model Checking

- Let K = (Q, Q₀, δ, L) be a Kripke structure and f a CTL formula
- Let $Q' \subseteq Q$. Define

 $Pre_{\mathcal{K}}(Q') = \{q : \text{ there is a } q' \text{ such that } q \to q', q' \in Q'\}$ $PRE_{\mathcal{K}}(Q') = \{q : \text{ for all } q' \text{ such that } q \to q', q' \in Q'\}$

• Define the function $\llbracket f \rrbracket_K$ as follows.

[[ap]] _K	=	$\{q: ap \in L(q)\}$
$\llbracket \neg f \rrbracket_K$	=	$Q \setminus \llbracket f rbracket_K$
$\llbracket f \lor g \rrbracket_K$	=	$\llbracket f \rrbracket_{\mathcal{K}} \cup \llbracket g \rrbracket_{\mathcal{K}}$
[[EX f]] _K	=	$Pre_{K}(\llbracket f \rrbracket_{K})$
$\llbracket \mathbf{A}(f\mathbf{U}g) \rrbracket_{\mathcal{K}}$	=	$\llbracket g \rrbracket_{\mathcal{K}} \cup (\llbracket f \rrbracket_{\mathcal{K}} \cap PRE_{\mathcal{K}}(\llbracket A(f U_{\mathcal{G}}) \rrbracket_{\mathcal{K}}))$
$\llbracket E(f Ug) \rrbracket_{\mathcal{K}}$	=	$\llbracket g \rrbracket_{\mathcal{K}} \cup (\llbracket f \rrbracket_{\mathcal{K}} \cap Pre_{\mathcal{K}}(\llbracket E(f Ug) \rrbracket_{\mathcal{K}}))$

Solving X = G(X)

- A function $G: 2^Q \to 2^Q$ is monotonic if $A \subseteq B$ implies $G(A) \subseteq G(B)$
- Define $G_i \subseteq Q$ as follows

$$G_0 = \emptyset$$
 and $G_{i+1} = G(G_i)$

Facts

•
$$G_i \subseteq G_{i+1}$$
 for all i

- $G_i = G_{i+1}$ implies $G_j = G_i$ for all $j \ge i$
- Let $f \in \mathbb{N}$ be that $G_f = G_{f+1}$. Then $G_f = G_{f+1} = G(G_f)$. G_f is a fixed point of G
- Let H ⊆ Q be that H = G(H). Then G_i ⊆ H for all i. Hence G_f ⊆ H. G_f is the *least fixed point* of G

Compute $\llbracket \mathbf{A}(f \mathbf{U}g) \rrbracket_{\mathcal{K}}$

Define

$$G(X) = \llbracket g \rrbracket_{\mathcal{K}} \cup (\llbracket f \rrbracket_{\mathcal{K}} \cap PRE_{\mathcal{K}}(X))$$

- $G: 2^Q \rightarrow 2^Q$ is monotonic
- If Q is finite, there is an $f \in \mathbb{N}$ such that $G_f = G_{f+1}$

• Then
$$G_f = \llbracket \mathbf{A}(f \mathbf{U}g) \rrbracket_K$$

• $\llbracket E(f Ug) \rrbracket_{\mathcal{K}}$ can be computed similarly

Decision Diagrams

- $\bullet~$ Let $\mathbb{B}=\{false, true\}$ be the Boolean domain
- An *n*-ary binary function is a function from \mathbb{B}^n to \mathbb{B}
- Decision diagrams are representations for binary functions

From Decision Diagrams to Binary Decision Diagrams

Variable Order in BDD's

• For any fixed variable ordering, the BDD representation is canonical

• f = g if and only if BDD(f) = BDD(g)

- The size of BDD's depends on the order of variables
 - finding optimal order is NP-hard

Let f and g be two n-ary binary functions. The following BDD operations are available:

- negation. **not** $BDD(f) = BDD(\neg f)$
- conjunction. BDD(f) and $BDD(g) = BDD(f \land g)$
- disjunction. BDD(f) or $BDD(g) = BDD(f \lor g)$
- universal quantification. forall $x_i BDD(f) = BDD(\forall x_i f)$
- existential quantification. exists $x_i BDD(f) = BDD(\exists x_i f)$
- renaiming. $BDD(f)[\overline{\mathbf{y}}/\overline{\mathbf{x}}] = BDD(f[\overline{\mathbf{x}} := \overline{y}])$

Evaluating QBF by BDD's

- Given a Qualified Boolean Formula (QBF) *f*, one can evaluate *f* as follows
 - expand all qualifiers as mentioned
 - construct BDD for the expanded formula
 - return the resultant BDD (either false or true)
- BDD's can in fact determine the satisfiability or validity of any propositional logic formula

BDD's and CTL Model Checking

- Problems in the definition of [[f]]_K in explicit-state CTL model checking
 - Set operations
 - $\llbracket f \lor g \rrbracket_{\mathcal{K}} = \llbracket f \rrbracket_{\mathcal{K}} \cup \llbracket g \rrbracket_{\mathcal{K}}$
 - $Pre_{K}(Q')$ and $PRE_{K}(Q')$
 - functions over sets of states
 - Fixed points
 - $\llbracket \mathsf{E}(f\mathsf{U}g) \rrbracket_{\mathcal{K}} = \llbracket g \rrbracket_{\mathcal{K}} \cup (\llbracket f \rrbracket_{\mathcal{K}} \cap Pre_{\mathcal{K}}(\llbracket \mathsf{E}(f\mathsf{U}g) \rrbracket_{\mathcal{K}}))$
- Can we solve them by BDD's?

BDD and Set Operations

- For simplicity, we only consider sets over binary vectors of size *n*
 - $\{000, 010, 100, 110\}$
- Characteristic function χ_H for set H is an *n*-ary binary function such that $\chi_H(x_n, x_{n-1}, \dots, x_1) =$ true if and only if $x_n x_{n-1} \cdots x_1 \in H$

•
$$\chi(x_3, x_2, x_1) = \neg x_1$$

- Set operations correspond to logical operations
 - $\chi_{\overline{H_0}} = \neg \chi_{H_0}$
 - $\chi_{H_0\cup H_1} = \chi_{H_0} \vee \chi_{H_1}$
 - $\chi_{H_0 \cap H_1} = \chi_{H_0} \wedge \chi_{H_1}$

Representing Transition Relations in BDD's

- Let K = (Q, Q₀, δ, L) be a Kripke structure. For simplicity, assume |Q| = 2^m for some m
- Each state *q* ∈ *Q* can be represented by a binary vector of size *m*
- Each transition $q \rightarrow q'$ is represented by a pair of binary vector
- Hence the transition relation δ is represented by a set of binary vectors of size 2m

Representing Transition Relations in BDD's (cont'd)

• Consider $K = (\{q_0, q_1, \dots, q_7\}, \{q_0, q_2, q_4, q_6\}, \delta, L)$ with $q_i \rightarrow q_{i+1 \mod 8}$ • $a_0 = 000, a_1 = 001, \ldots, a_7 = 111$ • $\chi_{O_0}(x_3, x_2, x_1) = \neg x_1$ • $\chi_{\delta}(x_3, x_2, x_1, x'_3, x'_2, x'_1) =$ $\begin{pmatrix} \neg x_3 \land \neg x_2 \land \neg x_1 \land \neg x_3 \land \neg x_2 \land \neg x_1 \land \neg x_3' \land \neg x_2' \land x_1' \lor \\ \neg x_3 \land \neg x_2 \land x_1 \land \neg x_3' \land x_2' \land \neg x_1' \lor \\ \neg x_3 \land x_2 \land \neg x_1 \land \neg x_3' \land x_2' \land \neg x_1' \lor \\ \neg x_3 \land x_2 \land \neg x_1 \land x_3' \land \neg x_2' \land \neg x_1' \lor \\ x_3 \land \neg x_2 \land \neg x_1 \land x_3' \land \neg x_2' \land \neg x_1' \lor \\ x_3 \land \neg x_2 \land \neg x_1 \land x_3' \land x_2' \land \neg x_1' \lor \\ x_3 \land \neg x_2 \land \neg x_1 \land x_3' \land x_2' \land \neg x_1' \lor \\ x_3 \land x_2 \land \neg x_1 \land x_3' \land x_2' \land \neg x_1' \lor \\ x_3 \land x_2 \land \neg x_1 \land x_3' \land \neg x_2' \land \neg x_1' \lor \\ \end{pmatrix}$ • $\chi_{\delta}(b_3, b_2, b_1, b'_3, b'_2, b'_1) =$ true if and only if $q_{(b_3b_2b_1)_2} \rightarrow q_{(b_3'b_2'b_1')_2}$ where $(i)_2$ denotes the number represented by *i* in binary

Computing $Pre_{\kappa}(Q')$ and $PRE_{\kappa}(Q')$

- Q' is a set of binary vectors
- Recall

 $\mathit{Pre}_{\mathcal{K}}(Q') = \{q: ext{ there is a } q' ext{ such that } q
ightarrow q', q' \in Q' \}$

 Let χ'_{Q'} be the characteristic function obtained by renaming each x to x' in χ_{Q'}

• Say, $\chi_{Q'}(x_3, x_2, x_1) = \neg x_1$. Then $\chi'_{Q'}(x'_3, x'_2, x'_1) = \neg x'_1$

• By assumption, $|Q| = 2^m$. Hence

$$\begin{array}{lll} \chi_{\operatorname{Pre}_{K}(Q')}(\overline{x}) &=& \exists \overline{x}'.\chi_{\delta}(\overline{x},\overline{x}') \wedge \chi'_{Q'} \\ \chi_{\operatorname{PRE}_{K}(Q')}(\overline{x}) &=& \exists \overline{x}'.\neg(\chi_{\delta}(\overline{x},\overline{x}') \wedge \neg \chi'_{Q'}) \end{array}$$

Solving X = G(X) in BDD's

- X is a set of binary vectors and G is a set function over state sets
- χ_X can be represented by a BDD
- G can be computed by BDD operations
- We simply compute G_i iteratively Input: G a set function over state sets Output: G_f its least fixed point
 i = 0
 G_i = BDD(χ_∅)
 do
 i = i + 1
 G_i = G(G_{i-1})
 while G_i ≠ G_{i-1}
 return G_i

Symbolic CTL Model Checking

• Encode δ and L in BDD's

•
$$\chi_{s}(\overline{x})=1$$
 if and only if $s\in L(\overline{x})$

• Compute $\text{BDD}(\chi_{\llbracket f \rrbracket_{\mathcal{K}}})$

• Check if
$$BDD(\chi_{Q_0} \land \neg \chi_{\llbracket f \rrbracket_K}) = BDD(\chi_{\emptyset})$$

- if so, return PASS
- otherwise, return FAIL

Limitation of BDD's

- Symbolic CTL model checking does not solve all our problems
 - BDD's are hard to predicate
 - the size is very sensitive to variable ordering
 - BDD's cannot handle real systems
 - up to 300 binary variables
 - Oftentimes, BDD's would blow up while building transition relations
 - no information at all when it doesn't work
- Techniques that can be scaled up are always needed

ACTL

- A CTL formula is in *negative normal form* if the negation appears only before atomic propositions
 - For instance, $\mathbf{AF} \neg p$ is in nnf but $\neg \mathbf{EG}p$ is not
- Write $K, \pi \models f \mathbf{R}g$ if for all $j \ge 0$, for all $i < j \ K, \pi(i) \not\models f$ implies $K, \pi(j) \models g$
 - Observe that $f\mathbf{R}g \equiv \neg(\neg f\mathbf{U}\neg g)$
- All CTL formula can be transformed to its negative normal form
 - Use $\neg \neg f \equiv f$, $\neg (f \lor g) \equiv \neg f \land \neg g$, $\neg (f \land g) \equiv \neg f \lor \neg g$, $\neg AXf \equiv EX \neg f$, $\neg EXf \equiv AX \neg f$, $\neg E(fUg) \equiv A(\neg fR \neg g)$, $\neg A(fUg) \equiv E(\neg fR \neg g)$
- ACTL is a subclass of CTL, where only universal path quantifier is allowed in negative normal form
 - AGp and ¬E(fUg) are in ACTL but EGp and AGEFp are not

Satisfiability and Validity

- Consider a propositional logic formula, say, $[p
 ightarrow (q \lor r)] \land [q \lor \neg r]$
- A *truth assignment* is a mapping from propositional variables (*p*, *q*, *r*, etc) to Boolean domain
- A propositional logic formula is *satisfiable* if there is a truth assignment that makes the formula evaluate to true
 - For instance, the above formula can be satisfied by setting p = false, q = true, and r = true
- A propositional logic formula is *valid* if for all truth assignment, the formula evaluates to true
 - For instance, the above formula evaluates to false when p = true, q = false, and r = false. It is not valid
- For any propositional formula *f*, *f* is not satisfiable if and only if ¬*f* is valid

Boolean Satisfiability

- Given a propositional logic formula, determine whether there is a satisfying truth assignment
- First NP-complete problem
- Since mid 90's, many practical SAT solvers are available
 - by "practical", we mean SAT solvers that can handle thousands of binary variables!
 - widely used SAT solvers are MiniSAT, zchaff, grasp
- We will use SAT solvers to solve ACTL model checking within bounded steps

Bounded Model Checking

- The idea is to verify the Kripke structure up to a fixed number of steps
- Equivalently, bounded model checking aims to find bugs within a fixed number of steps
 - if bugs are found, bounded model checker reports them
 - if bugs cannot be found in the first *n* steps, it does not guarantee the correctness of the Kripke structure

SAT and Bounded Model Checking

- Consider the formula $\mathbf{AX}p$ on the Kripke structure K
- What is a bug in K?
- By definition $K \not\models \mathbf{AX}p$ if $K, q_0 \models \neg \mathbf{AX}p$ for some $q_0 \in Q_0$
- Hence our goal is to find a $q_0 \in Q_0$ such that $K, q_0 \models \mathsf{EX} \neg p$
- Can it be done by SAT solvers?
- Yes! Checking the satisfiability of the following formula suffices.
 - $\chi_{Q_0}(\overline{x}_0) \wedge \chi_{\delta}(\overline{x}_0, \overline{x}_1) \wedge \neg \chi_{\rho}(\overline{x}_1)$
- What about verifying **EX**p?
 - Not directly. Checking the satisfiability of $[\chi_{Q_0}(\overline{x}_0) \wedge \chi_{\delta}(\overline{x}_0, \overline{x}_1)] \rightarrow \neg \chi_{\rho}(\overline{x}_1)$ does not work. Why?

SAT Solvers and ACTL Bounded Model Checking

- Let f be an ACTL formula
- ¬f is equivalent to a CTL formula where only existential path quantifiers occur
 - for instance, $\neg \mathbf{AGAF}p \equiv \mathbf{EFEG}\neg p$
- It suffices to find a $q_0 \in Q_0$ such that $K, q_0 \models \neg f$
 - if so, a bug is found and can be reported
 - if not, we conclude there is no bug up to the bound

Bounded ACTL Model Checking – Example

- Let $K = (Q, Q_0, \delta, L)$ be a Kripke structure with $|Q| = 2^m$
- Consider verifying $K \models \mathbf{AG}a$ up to the first 3 steps
- We hence try to find a $q_0 \in Q_0$ such that $K, q_0 \models \mathsf{EF} \neg a$
- Consider the following propositional formula

$$F_{3}(\overline{x}_{0}, \overline{x}_{1}, \overline{x}_{2}, \overline{x}_{3}) = \chi_{Q_{0}}(\overline{x}_{0}) \land \neg \chi_{a}(\overline{x}_{0}) \bigvee \\\chi_{Q_{0}}(\overline{x}_{0}) \land \chi_{\delta}(\overline{x}_{0}, \overline{x}_{1}) \land \neg \chi_{a}(\overline{x}_{1}) \bigvee \\\chi_{Q_{0}}(\overline{x}_{0}) \land \chi_{\delta}(\overline{x}_{0}, \overline{x}_{1}) \land \chi_{\delta}(\overline{x}_{1}, \overline{x}_{2}) \land \neg \chi_{a}(\overline{x}_{2}) \bigvee \\\chi_{Q_{0}}(\overline{x}_{0}) \land \chi_{\delta}(\overline{x}_{0}, \overline{x}_{1}) \land \chi_{\delta}(\overline{x}_{1}, \overline{x}_{2}) \land \chi_{\delta}(\overline{x}_{2}, \overline{x}_{3}) \land \neg \chi_{a}(\overline{x}_{3})$$

 Then F₃(x
₀, x
₁, x
₂, x
₃) is satisfiable if and only if there is a state q reachable from some q₀ ∈ Q₀ in three steps such that a ∉ L(q).

Notes about ACTL Bounded Model Checking

Pros

- Partial information. Even though we cannot verify the system, we do know it is correct up to a certain number of steps
- Scalability. Modern SAT solvers can handle thousands of binary variables. We can check larger systems
- Cons
 - A bit tricky to verify systems for sure. Extending bounded model checking to model checking is not straightforward
 - Does not work well for general CTL formulae. Alternation of universal and existential path quantifiers causes problems

From Bounded to Unbounded Model Checking

- It is a bit tricky to verify ACTL by SAT solvers completely
- We will introduce a complete SAT-based verification algorithm for invariant checking
- An *invariant* is an atomic proposition which is satisfied in all states reachable from initial states
 - a is an invariant if and only if AGa and Ga hold
- We will apply inductive reasoning in invariant checking!
Induction

- Suppose we know the following
 - $a \in L(q_0)$ for all $q_0 \in Q_0$
 - for all q and q' such that $q \longrightarrow q'$, $a \in L(q)$ implies $a \in L(q')$

• Can we conclude
$$K \models \mathbf{AG}a$$
?

Yes!

Proof.

If $K \not\models \mathbf{AG}_a$, there is a $q_0, q_1, \ldots, q_m \in Q$ such that

• $q_0 \in Q_0$

• $q_i \longrightarrow q_{i+1}$ for $0 \le i < m$

• $a \in L(q_i)$ for $0 \le i < m$ but $a \notin L(q_m)$

Then $q_m \notin Q_0$ by the basis. Moreover, $a \in L(q_m)$ for $a \in L(q_{m-1})$ and $q_{m-1} \longrightarrow q_m$ by inductive step

From Induction to *k*-Induction

- The idea can be generalized to more than one step
 - $a \in L(q_i)$ for all $q_i \in Q_i$ and $0 \le i < k$ where

$$\mathcal{Q}_i = \{ q': q_0 \longrightarrow q_1 \longrightarrow \cdots \longrightarrow q_i \text{ for some } q_0 \in \mathcal{Q}_0 \}$$

•
$$a \in L(q_i)$$
 for $0 \le i < k$ implies $a \in L(q_k)$ where $q_i \longrightarrow q_{i+1}$ for $0 \le i < k$

• How can we perform k-induction by SAT solvers

Induction by SAT Solvers

• Consider the following two SAT problems

- $\chi_{Q_0}(\overline{x}_0) \wedge \neg \chi_a(\overline{x}_0)$
- $\chi_{a}(\overline{y}_{0}) \wedge \chi_{\delta}(\overline{y}_{0}, \overline{y}_{1}) \wedge \neg \chi_{a}(\overline{y}_{1})$
- What do they mean if they are not satisfiable?
 - it's impossible to have an initial state not satisfying a
 - all initial states satisfy a
 - it's impossible to reach a state not satisfying *a* from a state satisfying *a*
 - any state satisfying a can only go to states satisfying a
- Hence, if these propositional logic formulae are unsatisfiable, we conclude *a* is an invariant

k-Induction by SAT Solvers

- The technique can be generalized to k-induction
- Consider the following propositional logic formulae
 - $\chi_{Q_0}(\overline{x}_0) \wedge \neg \chi_a(\overline{x}_0)$
 - $\chi_{Q_0}(\overline{x}_0) \wedge \chi_{\delta}(\overline{x}_0, \overline{x}_1) \wedge \neg \chi_{a}(\overline{x}_0)$
 - • •
 - $\chi_{Q_0}(\overline{x}_0) \wedge \chi_{\delta}(\overline{x}_0, \overline{x}_1) \wedge \cdots \chi_{\delta}(\overline{x}_{k-2}, \overline{x}_{k-1}) \wedge \neg \chi_{a}(\overline{x}_{k-1})$
 - $\chi_{\mathfrak{a}}(\overline{y}_{0}) \wedge \chi_{\delta}(\overline{y}_{0}, \overline{y}_{1}) \wedge \chi_{\mathfrak{a}}(\overline{y}_{1}) \wedge \chi_{\delta}(\overline{y}_{1}, \overline{y}_{2}) \wedge \cdots \chi_{\mathfrak{a}}(\overline{y}_{k-1}) \wedge \chi_{\delta}(\overline{y}_{k-1}, \overline{y}_{k}) \wedge \neg \chi_{\mathfrak{a}}(\overline{y}_{k})$
- If all of them are unsatisfiable, we conclude *a* is an invariant
 - what if some of them are satisfiable?

From *k*-Induction to k + 1-Induction

- When k-induction fails, there are two possibilities
 - some of basis formulae are satisfiable
 - $\chi_{Q_0}(\overline{x}_0) \wedge \neg \chi_{\mathfrak{s}}(\overline{x}_0), \ \chi_{Q_0}(\overline{x}_0) \wedge \chi_{\delta}(\overline{x}_0, \overline{x}_1) \wedge \neg \chi_{\mathfrak{s}}(\overline{x}_0), \ \ldots$
 - a counterexample is found!
 - the inductive formula is satisfiable
 - $\chi_{\mathfrak{a}}(\overline{y}_0) \wedge \chi_{\delta}(\overline{y}_0, \overline{y}_1) \wedge \chi_{\mathfrak{a}}(\overline{y}_1) \wedge \chi_{\delta}(\overline{y}_1, \overline{y}_2) \wedge \cdots \chi_{\mathfrak{a}}(\overline{y}_{k-1}) \wedge \chi_{\delta}(\overline{y}_{k-1}, \overline{y}_k) \wedge \neg \chi_{\mathfrak{a}}(\overline{y}_k)$
- If the inductive step is satisfiable, one increases k and performs k + 1-induction
 - if *a* is not an invariant, there is a *k* such that *k*-induction fails in the basis
 - the basis will be satisfiable for some \boldsymbol{k}
 - what if *a* is indeed an invariant?
 - can we always establish invariance by induction? not necessarily!

From Induction to Complete Induction

- If the basis formulae are not satisfiable but the inductive formula is satisfiable, when can we conclude the invariant checking passes?
- Idea: the shortest counterexample cannot be longer than the diameter of reachability graph
 - The reachability graph consists of states as nodes and transitions as edges

Proof.

Let k be the diameter of reachability graph. Consider $q_0 \longrightarrow q_1 \longrightarrow \cdots \longrightarrow q_k \longrightarrow q_{k+1}$. Then $q_i = q_j$ for some $0 \le i < j \le k+1$. Hence $q_0 \longrightarrow q_1 \longrightarrow \cdots \longrightarrow q_i \longrightarrow q_{j+1} \longrightarrow \cdots \longrightarrow q_{k+1}$ is a shorter computation path to q_{k+1}

From Induction to Complete Induction (cont'd)

- It suffices to find the diameter of reachability graph
- Consider the following formula

$$\begin{split} \chi_{Q_0}(\overline{x}_0) \bigwedge \\ \chi_{\delta}(\overline{x}_0, \overline{x}_1) \wedge \overline{x}_1 \neq \overline{x}_0 \bigwedge \\ \chi_{\delta}(\overline{x}_1, \overline{x}_2) \wedge \overline{x}_2 \neq \overline{x}_0 \wedge \overline{x}_2 \neq \overline{x}_1 \bigwedge \\ \cdots \\ \chi_{\delta}(\overline{x}_{k-1}, \overline{x}_k) \wedge \overline{x}_k \neq \overline{x}_0 \wedge \overline{x}_k \neq \overline{x}_1 \wedge \cdots \wedge \overline{x}_k \neq \overline{x}_{k-1} \end{split}$$

 ● If the formula is unsatisfiable for some k, we know the diameter of reachability graph is k − 1

Input: $K = (Q, Q_0, \delta, L)$ and an atomic proposition *a* Output: whether *a* is an invariant in *K*

()
$$k := 1$$

2 loop

6

```
g perform k-induction
```

- if a counterexample is found, return FAIL
- if the diameter is k, return PASS

$$k := k + 1$$

Wrap-up

We have introduced

- both LTL and CTL
- an automata-theoretic LTL model checking algorithm
- a BDD-based CTL model checking algorithm
- a SAT-based invariant checking algorithm
- $\bullet~\mathrm{SPIN}$ and NuSMV

Current Research

- Finite-state models to infinite-state models
 - context-free processes and pushdown systems
- Proof theory + model checking = ?
- Computational learning theory
- SAT-based model checking algorithm for universal μ -calculus