
Model Checking, Temporal Logic, and

Automata Theory

Bow-Yaw Wang

Institute of Information Science
Academia Sinica, Taiwan

July 12, 2007

Introduction

Consider the Needham-Schröder Authentication Protocol

A
{A,NA}KB−→ B

A
{NA,NB}KA←− B

A
{NB}KB−→ B

How do you know the protocol is “correct?”
Prove it by hand

sometimes it is very tedious and thus error-prone

Verify it by machine

Let’s do it!

Introduction (cont’d)

Here is the buggy trace found by OMocha

A
{A,NA}KE−→ E

E
{A,NA}KB−→ B

A
{NA,NB}KA←− E

{NA,NB}KA←− B

A
{NB}KE−→ E

E
{NB}KB−→ B

Introduction (cont’d)

Generally, it is undecidable to verify an arbitray property
on an arbitrary algorithm

Model checking hence focuses on verifying limited classes
of properties on restricted computation models

linear temporal logic, computational tree logic, µ-calculus
finite-state automata, pushdown automata, Petri nets

In this lecture, we will discuss automatic verification of
linear temporal logic and computational tree logic on
finite-state automata

Moreover, you will have a chance to use tools to verify
some protocols automatically

Relation to Other Topics

from logic to temporal logic

“realistic” functional programming

applying type system

Outline

1 Temporal Logic
Linear Temporal Logic
Computatoinal Tree Logic

2 Automata Theory
Finite-State Automata for Finite Strings
Finite-State Automata for Infinite Strings

3 LTL Model Checking
From LTL to Büchi Automata
Language Containment

4 CTL Model Checking
Explicit-State Model Checking
Symbolic Model Checking
Bounded Model Checking
Induction

Kripke Structures

Let AP be the set of atomic propositions. A Kripke
structure K = (Q,Q0, δ, L) is a triple where

Q is a set of states;
Q0 ⊆ Q is the set of initial states;
δ ⊆ Q ×Q is a (total) transition relation;
L : Q → 2AP

As usual, we write q −→ q ′ for (q, q′) ∈ δ

A computation path from q is an infinite sequence of
states π = p0p1 · · · pn · · · with p0 = q and pi −→ pi+1 for
0 ≤ i

Define π(i) = pipi+1 · · ·

Linear Temporal Logic – Syntax

An atomic proposition is an LTL formula

If f and g are LTL formulae

¬f and f ∨ g are LTL formuae
f Ug is an LTL formula

Linear Temporal Logic – Semantics

Let K = (Q,Q0, δ, L) be a Kripke structure.

Given a computation path π = p0p1 · · · pn · · · and an LTL
formula f , define the satisfaction relation K , π |= f by

K , π |= ap if ap ∈ L(p0)
K , π |= ¬f if not K , π |= f

K , π |= f ∨ g if K , π |= f or K , π |= g

K , π |= Xf if K , π(1) |= f

K , π |= f Ug if there is a k ≥ 0 such that K , π(k) |= g and
K , π(j) |= f for 0 ≤ j < k

We will use the following abbreviation

f ∧ g ≡ ¬(¬f ∨ ¬g) Ff ≡ trueUf

Gf ≡ ¬F¬f

Linear Temporal Logic – in Plain English

K , π |= ap: ap holds initially

K , π |= Xf : f holds at next position

K , π |= f Ug : f holds until g holds

K , π |= Ff : f holds eventually

K , π |= Gf : f always holds

Computational Tree Logic – Syntax

An atomic proposition is a CTL formula

If f and g are CTL formulae

¬f and f ∨ g are CTL formuae
A(f Ug) and E(f Ug) are CTL formulae

Computational Tree Logic – Semantics

Let K = (Q,Q0, δ, L) be a Kripke structure.

Given a state q ∈ Q and a CTL formula f , define the
satisfaction relation K , q |= f as follows

K , q |= ap if ap ∈ L(q)
K , q |= ¬f if not K , q |= f

K , q |= f ∨ g if K , q |= f or K , q |= g

K , q |= EXf if K , q′ |= f for some q′ with q → q′

K , q |= A(f Ug) if K , π |= f Ug for all computation path π
from q

K , q |= E(f Ug) if K , π |= f Ug for some computation path
π from q

We will use the following abbreviation

AXf ≡ ¬EX¬f AFf ≡ A(trueUf)
EFf ≡ E(trueUf) AGf ≡ ¬EF¬f

EGf ≡ ¬AF¬f

Computational Tree Logic – in Plain English

K , q |= ap: ap holds at q

K , q |= AXf : f holds at the next position in all paths

K , q |= EXf : f holds at the next position in some paths

K , q |= AFf : f holds for all paths from q eventually

K , q |= EFf : f holds for some path from q eventually

K , q |= AGf : f always holds for all paths from q

K , q |= EGf : f always holds for some path from q

K , q |= A(f Ug): f holds until g holds for all paths from q

K , q |= E(f Ug): f holds until g holds for some path from
q

Basic Properties

LTL and CTL are not comparable

There is a property on some Kripke structure, which is
expressible by LTL but not CTL and vice versa

!aa a

FGa holds for all computation paths from q0

but AFAGa does not hold on q0

Automata Theory

Finite State Automata and Regular Languages

a simple model accepts finite strings

ω-Automata and ω-Regular Languages

an extension of simple model accepts infinite strings

Strings and Languages

Consider a set of alphabets Σ

A string α is a finite sequence of symbols a1a2 · · · an

a, abc , verification, . . .

The length of a string α = a1a2 · · · an is n

The string of length 0 is called empty string and denoted
by ε

The set of all strings over Σ is denoted by Σ∗

A subset of Σ∗ is called a language

Finite State Automata

A finite state automaton (or finite state machine) is a
tuple M = (Σ,Q,Q0, δ,F) where

Σ is a finite set of alphabets;
Q is a finite set of states;
Q0 ⊆ Q is the set of initial states;
δ ⊆ Q × Σ×Q is a (total) transition relation; and
F ⊆ Q is a set of final states.

We will write q
a
−→ q′ for (q, a, q′) ∈ δ

If |Q0| = 1 and δ is in fact a function from Q × Σ to Q,
we say the automaton is deterministic

Runs and Acceptance

Let M = (Σ,Q,Q0, δ,F) be a finite state automaton and
α = a1a2 · · · an

A run for α on M is a squence of states p0p1 · · · pn such
that

p0 ∈ Q0;
pi

ai−→ pi+1 for 0 ≤ i < n

The set of runs for α on M is denoted by RunM(α)

The string α is accepted by M if there is a run
p0p1 · · · pn ∈ RunM(α) such that pn ∈ F

The language accepted by M is denoted by L(M)

Example

b

a

a

b

M = ({a, b}, {q0, q1}, {q0}, δ, {q0}) where

q0
a
−→ q1; q0

b
−→ q0; q1

a
−→ q0; q1

b
−→ q1

L(M) = {α : a occurs even number of times in α}

Basic Properties

Nondeterminism does not increase expressiveness

A language is accepted by a deterministic finite state
automaton if and only if it is accepted by a
nondeterministic finite state automaton

The class of languages accepted by finite state automaton
is the class of regular languages

RR ′, R + R ′, R∗, R

Infinite Strings and Languages

An ω-string σ is an infinite sequence of symbols
s1s2 · · · sn · · ·

aa · · · , 0100011011 · · · , . . .

The set of all ω-strings over Σ is denoted by Σω

A subset of Σω is called an ω-language

Automata to ω-Automata

How to make finite state automata accept ω-strings?

M = (Σ,Q,Q0, δ,F) : a finite state automaton

A run for σ = s1s2 · · · sn · · · on M is an infinite sequence
of states p1p2 · · · pn · · · such that

p0 ∈ Q0

pi
si−→ pi+1 for 0 ≤ i

How to define acceptance?

There is no “last” state in an infinite run

Acceptance for ω-Strings

Let σ = s1s2 · · · sn · · · be an ω-string and
B = (Σ,Q,Q0, δ,F) a finite state automaton

A run r for σ on B is an infinite sequence of states
p1p2 · · · pn · · · such that

p0 ∈ Q0

pi
si−→ pi+1 for 0 ≤ i

Define Inf B(r) to be the set of states which occur
infinitely many times in r

The Büchi acceptance condition for a run r requires
Inf B(r) ∩ F 6= ∅

An ω-string σ is accepted by B if there is an r ∈ RunB(σ)
satisfying the Büchi acceptance condition

A finite state automaton using the Büchi acceptance
condition is called a Büchi automaton

Example

b

a

a

b

bb · · · , aabb · · · , ababb · · · , . . .

abb · · · , babb · · · , . . .

L(M) = {σ :
there are infinitely many or even number of a in σ}

Basic Properties

Deterministic Büchi automata is strictly less expressive
than nondeterministic ones

The language {σ : σ contains finitely many a’s} is
accepted by a nondeterministic Büchi automaton but not
by any deterministic Büchi automaton.

ba,b

a

Basic Properties (cont’d)

Proof.

Suppose there is a deterministic Büchi automaton
B = (Σ,Q, {q0}, δ,F) accepting the same language. Then

there is an n0 such that q0
bn0
−→ q for some q ∈ F . Otherwise,

B would not accept bω, a contradiction. Similarly, there must

be an n1 such that q0
bn1abn1
−→ q for some q ∈ F . Hence there

are n0, n1, . . . , nm, . . . such that

q0
bn0abn1 ···abnm

−→ q

for some q ∈ F . But the ω-string bn0abn1 · · · abnm · · · contains
infinitely many a’s.

Generalized Büchi Automata

A generalized Büchi Automaton B = (Σ,Q,Q0, δ,F)
consists of

Σ, a finite set of alphabets

Q, a finite set of states

Q0 ⊆ Q, the set of initial states

δ ⊆ Q × Σ×Q, the transition relation

F ⊆ 2Q , a finite class of accepting sets

The generalized Büchi acceptance condition for a run r

requires Inf B(r) ∩ F 6= ∅ for all F ∈ F

An ω-string σ is accepted by B if there is an r ∈ RunB(σ)
satisfying the generalized Büchi acceptance condition

A finite state automaton using the generalized Büchi
acceptance condition is called a generalized Büchi

automaton

Expressive Power of Generalized Büchi Automata

Let B = (Σ,Q,Q0, δ,F) be a Büchi automaton. It is easy
to see that GB = (Σ,Q,Q0, δ, {F}) is a generalized Büchi
automaton accepting the same language
Conversely, let G = (Σ,Q,Q0, δ,F) be a generalized
Büchi automaton with F = {F0,F1, . . . ,Fn−1}
Construct BG = (Σ,Q ×N,Q0 × {0}, δ

′,Q × {0}) as
follows

((q, m), s, (q′ , m′)) ∈ δ′ if and only if
(q, s, q′) ∈ δ

m′ =



m if q′ 6∈ Fm

m + 1 mod n if q′ ∈ Fm

Intuitively, we iterate through all accepting sets by a
counter
A run visits all accepting sets infinitely many times if and
only if the counter resets to 0 infinitely many times
Büchi automata have the same expressive power as
generalized Büchi automata

LTL Model Checking Problem

Let K = (Q,Q0, δ, L) be a Kripke structure and f an LTL
formula. We write K |= f if K , π |= f for all computation
paths π from a state in Q0

Given a Kripke structure K = (Q,Q0, δ, L) and an LTL
formula f , the LTL model checking problem is to decide
whether K |= f

Automata-Theoretic Approach

The idea is to reduce the LTL model checking problem to
the language containment problem in automata theory

Intuitively, we will

translate any Kripke structure to an automaton;
translate any LTL formula to another automaton;
check whether the language accepted by the former
automaton is contained in the language accepted by the
latter

From Kripke Structures to Büchi Automata

Consider any Kripke structure K = (Q,Q0, δ, L)

Let ΣAP = 2AP

We will construct a Büchi automaton accepting a
ω-language in Σω

AP

Define BK = (ΣAP ,Q ∪ {ι}, {ι}, δ′ ,Q)

ι is a new state not in Q

(q, s, q′) ∈ δ′ if s = L(q′) and (q, s, q′) ∈ δ
(ι, s0, q0) ∈ δ′ if s0 = L(q0) and q0 ∈ Q0

The alphabets are in fact the set of atomic propositions
satisfied in the target state

Any computation path in K corresponds to an ω-string
over ΣAP accepted by BK and vice versa. Precisely,

L(BK) = {L(π) : π is a computation path from q0 ∈ Q0}.

From LTL to Büchi Automata

For any LTL formula f , we would like to construct a Büchi
automata Bf over ΣAP accepting all ω-strings satisfying f

Hence to check whether K , π |= f for all π from some
state in Q0 is equivalent to checking L(BK) ⊆ L(Bf)

Fischer-Ladner Closure

Let f be an LTL formula. The Fischer-Ladner closure

C (f) is defined as follows (we identify ¬¬f ′ with f ′).

C (f) = {f ′,¬f ′ : f ′ is a subformula of f }

For example,

C (aUb) = {aUb,¬(aUb), a,¬a, b,¬b}

Healthiness

Let f be an LTL formula. A subset D of C (f) is healthy if
it satisfies the following conditions

for all f ′ ∈ C (f), either f ′ ∈ D or ¬f ′ ∈ D;
if f ′

0 ∨ f ′
1 ∈ C (f), then f ′

0 ∨ f ′
1 ∈ D iff f ′

0 ∈ D or f ′1 ∈ D;
if f ′Ug ′ ∈ D, then g ′ ∈ D or f ′ ∈ D;
if f ′Ug ′ ∈ C (f) 6∈ D, then g ′ 6∈ D.

Automaton Bf = (ΣAP , Q, Q0, δ, F)

Q = {D : D is healthy in C (f)}

Q0 = {D0 ∈ Q : f ∈ D0}

(D, s,D ′) ∈ δ if

s = D ∩ AP ;
if Xf ′ ∈ D, then f ′ ∈ D ′;
if Xf ′ ∈ C (f) 6∈ D, then f ′ 6∈ D ′;
if f ′Ug ′ ∈ D and g ′ 6∈ D, then f ′Ug ′ ∈ D ′; and
if f ′Ug ′ ∈ C (f) 6∈ D and f ′ ∈ D, then f ′Ug ′ 6∈ D ′.

F = {F0,F1, . . . ,Fn} where
Fi = {D : f ′i Ug ′

i 6∈ D or g ′
i ∈ D} and f ′0Ug ′

0, f ′1Ug ′
1,

. . . , f ′nUg ′
n are all subformulae of this form in C (f)

BaUb

a

a U b
a b

a U b
a

a U b
b

C (aUb) = {aUb,¬(aUb), a,¬a, b,¬b}

All subsets are ∅, {a}, {b}, {aUb}, {a, b}, {a, aUb},
{b, aUb}, and {a, b, aUb} All subsets are ∅, {a}, {b},
{aUb}, {a, b}, {a, aUb}, {b, aUb}, and {a, b, aUb}

B(aUb)∨(¬aUb)

!a U b

(a U b) + (!a U b)
a

a

(a U b) + (!a U b) (a U b) + (!a U b)
b

(a U b) + (!a U b)

a b

a U b
!a U b

a U b
!a U b

a U b

C ((aUb) ∨ (¬aUb)) = {(aUb) ∨ (¬aUb),¬((aUb) ∨
(¬aUb)), aUb,¬(aUb),¬aUb,¬(¬aUb), a,¬a, b,¬b}
Healthy subsets are {}, {a}, {(aUb) ∨ (¬aUb), aUb, a},
{(aUb) ∨ (¬aUb),¬aUb},
{(aUb) ∨ (¬aUb), aUb,¬aUb, b},
{(aUb) ∨ (¬aUb), aUb,¬aUb, a, b}

Why is {(aUb) ∨ (¬aUb), aUb, b} not healty?

Checking Language Containment

For any LTL formula f , L(Bf) contains all ω-strings over
ΣAP satisfying f

For any Kripke structure K , L(BK) contains all ω-strings
over ΣAP corresponding some computation path in K

from an initial state

It remains to check whether L(BK) ⊆ L(Bf)

Observe that L(BK) ⊆ L(Bf) if and only if
L(BK) ∩ L(Bf) = ∅

How to check L(BK) ∩ L(Bf) = ∅?

How to compute L(Bf)?

How to check L(BK) ∩ L(Bf) = ∅?

Computing L(Bf)

Let M be a finite state automaton. Its complement
automaton, M, is a finite state automaton such that
L(M) = L(M)

determize M and change the accepting states

Can we do it for Büchi automata?

Not directly. Deterministic Büchi automata is strictly less
expressive than Büchi automata

A more general deterministic ω-automata is required
Alas, it is rather complicated

Computing L(Bf) (cont’d)

Fortunately, there is an easy way out

Observe that a computation path π satisfies f if and only
if it does not satisfy ¬f

Hence L(Bf) = L(B¬f)

Complementation of Büchi automata is not needed!

Checking L(B0) ∩ L(B1) = ∅

Let M0 and M1 be finite state automata

How to check L(M0) ∩ L(M1) = ∅?

construct product automaton M0 ×M1 and check if
L(M0 ×M1) = ∅

Can we do it for Büchi automata?

Yes!

Product Automata B0 × B1

Let B0 = (Σ,Q0,Q0
0 , δ0,F 0) and B1 = (Σ,Q1,Q1

0 , δ1,F 1)
be Büchi automata

Define B0 × B1 as follows.

Σ is its alphabets
Q0 ×Q1 × {0, 1, 2} are its states
Q0

0 ×Q1
0 × {0} are the initial states

Q0 ×Q1 × {2} are the accepting states

Moreover 〈p0, r1, x〉
a
−→ 〈q0, s1, y〉 if

p0 a
−→

0
q0 in B0;

r 1 a
−→

1
s1 in B1; and

y =

8

>

>

<

>

>

:

1 if x = 0 and q0 ∈ F 0

2 if x = 1 and s1 ∈ F 1

0 if x = 2
x otherwise

Example of Product Automata

a

a

ba a a

aa

a

a

b

b b

b
b

b

b b

Product Büchi Automaton

Automata-Theoretic LTL Model Checking

Algorithm

Input: a Kripke structure K and an LTL formula f

Output: whether K |= f

1 Construct BK and B¬f for K and ¬f respectively
2 Check whether L(BK × B¬f) = ∅

if so, return PASS

otherwise, return FAIL

CTL Model Checking Problem

Let K = (Q,Q0, δ, L) be a Kripke structure and f a CTL
formula. We write K |= f if K , q0 |= f for all q0 ∈ Q0

Given a Kripke structure K = (Q,Q0, δ, L) and a CTL
formula f , the CTL model checking problem is to decide
whether K |= f

Explicit-State CTL Model Checking

Let K = (Q,Q0, δ, L) be a Kripke structure and f a CTL
formula

Let Q ′ ⊆ Q. Define

PreK (Q ′) = {q : there is a q′ such that q → q′, q′ ∈ Q ′}

PREK (Q ′) = {q : for all q′ such that q → q′, q′ ∈ Q ′}

Define the function [[f]]K as follows.

[[ap]]K = {q : ap ∈ L(q)}

[[¬f]]K = Q \ [[f]]K

[[f ∨ g]]K = [[f]]K ∪ [[g]]K

[[EXf]]K = PreK ([[f]]K)

[[A(f Ug)]]K = [[g]]K ∪ ([[f]]K ∩ PREK ([[A(f Ug)]]K))

[[E(f Ug)]]K = [[g]]K ∪ ([[f]]K ∩ PreK ([[E(f Ug)]]K))

Solving X = G (X)

A function G : 2Q → 2Q is monotonic if A ⊆ B implies
G (A) ⊆ G (B)

Define Gi ⊆ Q as follows

G0 = ∅ and Gi+1 = G (Gi)

Facts

Gi ⊆ Gi+1 for all i

Gi = Gi+1 implies Gj = Gi for all j ≥ i

Let f ∈ N be that Gf = Gf +1. Then Gf = Gf +1 = G (Gf).
Gf is a fixed point of G

Let H ⊆ Q be that H = G (H). Then Gi ⊆ H for all i .
Hence Gf ⊆ H. Gf is the least fixed point of G

Compute [[A(f Ug)]]K

Define
G (X) = [[g]]K ∪ ([[f]]K ∩ PREK (X))

G : 2Q → 2Q is monotonic

If Q is finite, there is an f ∈ N such that Gf = Gf +1

Then Gf = [[A(f Ug)]]K

[[E(f Ug)]]K can be computed similarly

CTL Model Checking Algorithm

Input: a Kripke structure K and a CTL formula f

Output: whether K |= f

1 Compute [[f]]K
2 Check Q0 ⊆ [[f]]K

if so, return PASS

otherwise, return FAIL

However, computing [[f]]K is not easy when |Q| is very
large

Can we compute [[f]]K efficiently (in practice)?

Decision Diagrams

Let B = {false, true} be the Boolean domain

An n-ary binary function is a function from B
n to B

Decision diagrams are representations for binary functions

x

1110

y y

f (x , y) = x ∨ y

From Decision Diagrams to Binary Decision

Diagrams

Binary decision diagrams are obtained by

merging identical nodes
removing redundant nodes

0

x

y y

zzzz

0 0 0 0 0 1 1 1

x

y

z

y

10

zz

x

y

z

1

f (x , y , z) = x ∧ (y ∨ z)

Variable Order in BDD’s

For any fixed variable ordering, the BDD representation is
canonical

f = g if and only if BDD(f) = BDD(g)

The size of BDD’s depends on the order of variables
finding optimal order is NP-hard

1

x

y y

z z

u

0 1

x

z

y y

u

0

(y ∧ u) ∨ ((x ∧ z) ∧ (y ∨ u))

BDD Operations

Let f and g be two n-ary binary functions. The following BDD
operations are available:

negation. not BDD(f) = BDD(¬f)

conjunction. BDD(f) and BDD(g) = BDD(f ∧ g)

disjunction. BDD(f) or BDD(g) = BDD(f ∨ g)

universal quantification. forall xiBDD(f) = BDD(∀xi f)

existential quantification. exists xiBDD(f) = BDD(∃xi f)

renaiming. BDD(f)[y/x] = BDD(f [x := y])

Evaluating QBF by BDD’s

Given a Qualified Boolean Formula (QBF) f , one can
evaluate f as follows

expand all qualifiers as mentioned
construct BDD for the expanded formula
return the resultant BDD (either false or true)

BDD’s can in fact determine the satisfiability or validity of
any propositional logic formula

BDD’s and CTL Model Checking

Problems in the definition of [[f]]K in explicit-state CTL
model checking

Set operations

[[f ∨ g]]K = [[f]]K ∪ [[g]]K

PreK (Q ′) and PREK (Q ′)

functions over sets of states

Fixed points

[[E(f Ug)]]K = [[g]]K ∪ ([[f]]K ∩ PreK ([[E(f Ug)]]K))

Can we solve them by BDD’s?

BDD and Set Operations

For simplicity, we only consider sets over binary vectors of
size n

{000, 010, 100, 110}

Characteristic function χH for set H is an n-ary binary
function such that χH(xn, xn−1, . . . , x1) = true if and only
if xnxn−1 · · · x1 ∈ H

χ(x3, x2, x1) = ¬x1

Set operations correspond to logical operations

χH0
= ¬χH0

χH0∪H1 = χH0 ∨ χH1

χH0∩H1 = χH0 ∧ χH1

Representing Transition Relations in BDD’s

Let K = (Q,Q0, δ, L) be a Kripke structure. For simplicity,
assume |Q| = 2m for some m

Each state q ∈ Q can be represented by a binary vector of
size m

Each transition q → q′ is represented by a pair of binary
vector

Hence the transition relation δ is represented by a set of
binary vectors of size 2m

Representing Transition Relations in BDD’s

(cont’d)

Consider K = ({q0, q1, . . . , q7}, {q0, q2, q4, q6}, δ, L) with
qi → qi+1 mod 8

q0 = 000, q1 = 001, . . . , q7 = 111
χQ0(x3, x2, x1) = ¬x1

χδ(x3, x2, x1, x
′
3, x

′
2, x

′
1) =

























¬x3 ∧ ¬x2 ∧ ¬x1

∧

¬x ′
3 ∧ ¬x

′
2 ∧ x ′

1

∨

¬x3 ∧ ¬x2 ∧ x1

∧

¬x ′
3 ∧ x ′

2 ∧ ¬x
′
1

∨

¬x3 ∧ x2 ∧ ¬x1

∧

¬x ′
3 ∧ x ′

2 ∧ x ′
1

∨

¬x3 ∧ x2 ∧ x1

∧

x ′
3 ∧ ¬x

′
2 ∧ ¬x

′
1

∨

x3 ∧ ¬x2 ∧ ¬x1

∧

x ′
3 ∧ ¬x

′
2 ∧ x ′

1

∨

x3 ∧ ¬x2 ∧ x1

∧

x ′
3 ∧ x ′

2 ∧ ¬x
′
1

∨

x3 ∧ x2 ∧ ¬x1

∧

x ′
3 ∧ x ′

2 ∧ x ′
1

∨

x3 ∧ x2 ∧ x1

∧

¬x ′
3 ∧ ¬x

′
2 ∧ ¬x

′
1

























χδ(b3, b2, b1, b
′
3, b

′
2, b

′
1) = true if and only if

q(b3b2b1)2 → q(b′

3b
′

2b
′

1)2
where (i)2 denotes the number

represented by i in binary

Computing PreK (Q ′) and PREK(Q ′)

Q ′ is a set of binary vectors

Recall
PreK (Q ′) = {q : there is a q′ such that q → q′, q′ ∈ Q ′}

Let χ′
Q′ be the characteristic function obtained by

renaming each x to x ′ in χQ′

Say, χQ′(x3, x2, x1) = ¬x1. Then χ′
Q′(x ′

3, x
′
2, x

′
1) = ¬x ′

1

By assumption, |Q| = 2m. Hence

χPreK (Q′)(x) = ∃x ′.χδ(x , x ′) ∧ χ′
Q′

χPREK (Q′)(x) = ∃x ′.¬(χδ(x , x ′) ∧ ¬χ′
Q′)

Solving X = G (X) in BDD’s

X is a set of binary vectors and G is a set function over
state sets

χX can be represented by a BDD

G can be computed by BDD operations

We simply compute Gi iteratively

Input: G a set function over state sets
Output: Gf its least fixed point

1 i = 0
2 Gi = BDD(χ∅)
3 do
4 i = i + 1
5 Gi = G (Gi−1)
6 while Gi 6= Gi−1

7 return Gi

Symbolic CTL Model Checking

Given K = (Q,Q0, δ, L)

Encode δ and L in BDD’s

χa(x) = 1 if and only if a ∈ L(x)

Compute BDD(χ[[f]]K)

Check if BDD(χQ0
∧ ¬χ[[f]]K) = BDD(χ∅)

if so, return PASS

otherwise, return FAIL

Limitation of BDD’s

Symbolic CTL model checking does not solve all our
problems

BDD’s are hard to predicate

the size is very sensitive to variable ordering

BDD’s cannot handle real systems

up to 300 binary variables

Oftentimes, BDD’s would blow up while building transition
relations

no information at all when it doesn’t work

Techniques that can be scaled up are always needed

ACTL

A CTL formula is in negative normal form if the negation
appears only before atomic propositions

For instance, AF¬p is in nnf but ¬EGp is not

Write K , π |= f Rg if for all j ≥ 0, for all i < j K , π(i) 6|= f
implies K , π(j) |= g

Observe that f Rg ≡ ¬(¬f U¬g)

All CTL formula can be transformed to its negative normal
form

Use ¬¬f ≡ f , ¬(f ∨ g) ≡ ¬f ∧ ¬g , ¬(f ∧ g) ≡ ¬f ∨ ¬g ,
¬AXf ≡ EX¬f , ¬EXf ≡ AX¬f , ¬E(f Ug) ≡ A(¬f R¬g),
¬A(f Ug) ≡ E(¬f R¬g)

ACTL is a subclass of CTL, where only universal path
quantifier is allowed in negative normal form

AGp and ¬E(f Ug) are in ACTL but EGp and AGEFp are
not

Satisfiability and Validity

Consider a propositional logic formula, say,
[p → (q ∨ r)] ∧ [q ∨ ¬r]

A truth assignment is a mapping from propositional
variables (p, q, r , etc) to Boolean domain

A propositional logic formula is satisfiable if there is a
truth assignment that makes the formula evaluate to true

For instance, the above formula can be satisfied by setting
p = false, q = true, and r = true

A propositional logic formula is valid if for all truth
assignment, the formula evaluates to true

For instance, the above formula evaluates to false when
p = true, q = false, and r = false. It is not valid

For any propositional formula f , f is not satisfiable if and
only if ¬f is valid

Boolean Satisfiability

Given a propositional logic formula, determine whether
there is a satisfying truth assignment

First NP-complete problem

Since mid 90’s, many practical SAT solvers are available

by “practical”, we mean SAT solvers that can handle
thousands of binary variables!
widely used SAT solvers are MiniSAT, zchaff, grasp

We will use SAT solvers to solve ACTL model checking
within bounded steps

Bounded Model Checking

The idea is to verify the Kripke structure up to a fixed
number of steps

Equivalently, bounded model checking aims to find bugs
within a fixed number of steps

if bugs are found, bounded model checker reports them
if bugs cannot be found in the first n steps, it does not
guarantee the correctness of the Kripke structure

SAT and Bounded Model Checking

Consider the formula AXp on the Kripke structure K

What is a bug in K?

By definition K 6|= AXp if K , q0 |= ¬AXp for some
q0 ∈ Q0

Hence our goal is to find a q0 ∈ Q0 such that
K , q0 |= EX¬p

Can it be done by SAT solvers?

Yes! Checking the satisfiability of the following formula
suffices.

χQ0(x0) ∧ χδ(x0, x1) ∧ ¬χp(x1)

What about verifying EXp?

Not directly. Checking the satisfiability of
[χQ0(x0) ∧ χδ(x0, x1)]→ ¬χp(x1) does not work. Why?

SAT Solvers and ACTL Bounded Model Checking

Let f be an ACTL formula

¬f is equivalent to a CTL formula where only existential
path quantifiers occur

for instance, ¬AGAFp ≡ EFEG¬p

It suffices to find a q0 ∈ Q0 such that K , q0 |= ¬f

if so, a bug is found and can be reported
if not, we conclude there is no bug up to the bound

Bounded ACTL Model Checking – Example

Let K = (Q,Q0, δ, L) be a Kripke structure with |Q| = 2m

Consider verifying K |= AGa up to the first 3 steps

We hence try to find a q0 ∈ Q0 such that K , q0 |= EF¬a

Consider the following propositional formula

F3(x0, x1, x2, x3)

= χQ0(x0) ∧ ¬χa(x0)
∨

χQ0(x0) ∧ χδ(x0, x1) ∧ ¬χa(x1)
∨

χQ0(x0) ∧ χδ(x0, x1) ∧ χδ(x1, x2) ∧ ¬χa(x2)
∨

χQ0(x0) ∧ χδ(x0, x1) ∧ χδ(x1, x2) ∧ χδ(x2, x3) ∧ ¬χa(x3)

Then F3(x0, x1, x2, x3) is satisfiable if and only if there is
a state q reachable from some q0 ∈ Q0 in three steps such
that a 6∈ L(q).

Notes about ACTL Bounded Model Checking

Pros

Partial information. Even though we cannot verify the
system, we do know it is correct up to a certain number of
steps
Scalability. Modern SAT solvers can handle thousands of
binary variables. We can check larger systems

Cons

A bit tricky to verify systems for sure. Extending bounded
model checking to model checking is not straightforward
Does not work well for general CTL formulae. Alternation
of universal and existential path quantifiers causes
problems

From Bounded to Unbounded Model Checking

It is a bit tricky to verify ACTL by SAT solvers completely

We will introduce a complete SAT-based verification
algorithm for invariant checking

An invariant is an atomic proposition which is satisfied in
all states reachable from initial states

a is an invariant if and only if AGa and Ga hold

We will apply inductive reasoning in invariant checking!

Induction

Consider verifying AGa on K = (Q,Q0, δ, L)

Suppose we know the following

a ∈ L(q0) for all q0 ∈ Q0

for all q and q′ such that q −→ q′, a ∈ L(q) implies
a ∈ L(q′)

Can we conclude K |= AGa?

Yes!

Proof.

If K 6|= AGa, there is a q0, q1, . . . , qm ∈ Q such that

q0 ∈ Q0

qi −→ qi+1 for 0 ≤ i < m

a ∈ L(qi) for 0 ≤ i < m but a 6∈ L(qm)

Then qm 6∈ Q0 by the basis. Moreover, a ∈ L(qm) for a ∈ L(qm−1)
and qm−1 −→ qm by inductive step

From Induction to k-Induction

The idea can be generalized to more than one step

a ∈ L(qi) for all qi ∈ Qi and 0 ≤ i < k where

Qi = {q′ : q0 −→ q1 −→ · · · −→ qi for some q0 ∈ Q0}

a ∈ L(qi) for 0 ≤ i < k implies a ∈ L(qk) where
qi −→ qi+1 for 0 ≤ i < k

How can we perform k-induction by SAT solvers

Induction by SAT Solvers

Consider the following two SAT problems

χQ0(x0) ∧ ¬χa(x0)
χa(y0) ∧ χδ(y 0, y1) ∧ ¬χa(y 1)

What do they mean if they are not satisfiable?
it’s impossible to have an initial state not satisfying a

all initial states satisfy a

it’s impossible to reach a state not satisfying a from a
state satisfying a

any state satisfying a can only go to states satisfying a

Hence, if these propositional logic formulae are
unsatisfiable, we conclude a is an invariant

k-Induction by SAT Solvers

The technique can be generalized to k-induction

Consider the following propositional logic formulae

χQ0(x0) ∧ ¬χa(x0)
χQ0(x0) ∧ χδ(x0, x1) ∧ ¬χa(x0)
· · ·
χQ0(x0) ∧ χδ(x0, x1) ∧ · · ·χδ(xk−2, xk−1) ∧ ¬χa(xk−1)
χa(y0) ∧ χδ(y 0, y1)

∧

χa(y 1) ∧ χδ(y1, y2)
∧

· · ·χa(y k−1) ∧
χδ(y k−1, y k)

∧

¬χa(y k)

If all of them are unsatisfiable, we conclude a is an
invariant

what if some of them are satisfiable?

From k-Induction to k + 1-Induction

When k-induction fails, there are two possibilities
some of basis formulae are satisfiable

χQ0(x 0) ∧ ¬χa(x 0), χQ0(x0) ∧ χδ(x0, x1) ∧ ¬χa(x0), . . .

a counterexample is found!

the inductive formula is satisfiable

χa(y 0)∧ χδ(y 0, y 1)
V

χa(y 1)∧χδ(y 1, y 2)
V

· · ·χa(y k−1)∧
χδ(y k−1, y k)

V

¬χa(y k)

If the inductive step is satisfiable, one increases k and
performs k + 1-induction

if a is not an invariant, there is a k such that k-induction
fails in the basis
the basis will be satisfiable for some k
what if a is indeed an invariant?

can we always establish invariance by induction? not
necessarily!

From Induction to Complete Induction

If the basis formulae are not satisfiable but the inductive
formula is satisfiable, when can we conclude the invariant
checking passes?

Idea: the shortest counterexample cannot be longer than
the diameter of reachability graph

The reachability graph consists of states as nodes and
transitions as edges

Proof.

Let k be the diameter of reachability graph. Consider
q0 −→ q1 −→ · · · −→ qk −→ qk+1. Then qi = qj for some
0 ≤ i < j ≤ k + 1. Hence
q0 −→ q1 −→ · · · −→ qi −→ qj+1 −→ · · · −→ qk+1 is a
shorter computation path to qk+1

From Induction to Complete Induction (cont’d)

It suffices to find the diameter of reachability graph

Consider the following formula

χQ0
(x0)

∧

χδ(x0, x1) ∧ x1 6= x0
∧

χδ(x1, x2) ∧ x2 6= x0 ∧ x2 6= x1
∧

· · ·
χδ(xk−1, xk) ∧ xk 6= x0 ∧ xk 6= x1 ∧ · · · ∧ xk 6= xk−1

If the formula is unsatisfiable for some k , we know the
diameter of reachability graph is k − 1

Complete SAT-based Invariant Checking

Here is the algorithm

Input: K = (Q, Q0, δ, L) and an atomic proposition a

Output: whether a is an invariant in K
1 k := 1
2 loop
3 perform k-induction
4 if a counterexample is found, return FAIL
5 if the diameter is k , return PASS
6 k := k + 1

Wrap-up

We have introduced

both LTL and CTL

an automata-theoretic LTL model checking algorithm

a BDD-based CTL model checking algorithm

a SAT-based invariant checking algorithm

Spin and NuSMV

Current Research

Finite-state models to infinite-state models

context-free processes and pushdown systems

Proof theory + model checking = ?

Computational learning theory

SAT-based model checking algorithm for universal
µ-calculus

