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Introduction

@ Consider the Needham-Schroder Authentication Protocol
{ANa}kg
—
{Na;Ns}k,
F

elke

@ How do you know the protocol is “correct?”
@ Prove it by hand
@ sometimes it is very tedious and thus error-prone
o Verify it by machine
9 Let's do it!




Introduction (cont'd)

@ Here is the buggy trace found by OMOCHA
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Generally, it is undecidable to verify an arbitray property
on an arbitrary algorithm
Model checking hence focuses on verifying limited classes
of properties on restricted computation models
@ linear temporal logic, computational tree logic, u-calculus
o finite-state automata, pushdown automata, Petri nets
In this lecture, we will discuss automatic verification of
linear temporal logic and computational tree logic on
finite-state automata

Moreover, you will have a chance to use tools to verify
some protocols automatically



Relation to Other Topics

@ from logic to temporal logic
@ ‘“realistic” functional programming

@ applying type system




@ Temporal Logic
@ Linear Temporal Logic
@ Computatoinal Tree Logic

© Automata Theory
@ Finite-State Automata for Finite Strings
@ Finite-State Automata for Infinite Strings

© LTL Model Checking
® From LTL to Biichi Automata
@ Language Containment

Q@ CTL Model Checking
@ Explicit-State Model Checking
@ Symbolic Model Checking
@ Bounded Model Checking
@ Induction



Kripke Structures

@ Let AP be the set of atomic propositions. A Kripke
structure K = (Q, Qo, 9, L) is a triple where
o Q is a set of states;
Qo C Q is the set of initial states;
0 C Q x Q is a (total) transition relation;
L:Q — 24P

@ As usual, we write ¢ — ¢’ for (¢,q4') € §

¢ ¢ ¢

@ A computation path from q is an infinite sequence of
states m = pop1 -+ pn--- with pgp = g and p; — p;41 for
0<i

@ Define 7(i) = pipit1---




Linear Temporal Logic — Syntax

@ An atomic proposition is an LTL formula
o If f and g are LTL formulae

e —f and fV g are LTL formuae
o fUg is an LTL formula




o Let K =(Q, Qu, 9, L) be a Kripke structure.

@ Given a computation path m = pop1 -+ pn--- and an LTL
formula f, define the satisfaction relation K, m = f by

K,m = apif ap € L(po)

K,mE-fifnot K,m=f

KireEfvgiftK,teEfo K,nlEg

K,m k= XFif K,m(l) = f

K, 7 |= fUg if there is a k > 0 such that K, 7(k) = g and

K,m(j) = f for 0 <j < k

@ We will use the following abbreviation

¢ € ¢ ¢ ¢

fAg
Gf

—(=f V —g) Ff = trueUf
~F~f



Linear Temporal Logic — in Plain English

K, 7 [= ap: ap holds initially
K,m = Xf: f holds at next position
K,m = fUg: f holds until g holds
K,m = Ff: f holds eventually

K,m = Gf: f always holds




Computational Tree Logic — Syntax

@ An atomic proposition is a CTL formula
o If f and g are CTL formulae

@ —f and f V g are CTL formuae
o A(fUg) and E(fUg) are CTL formulae




o Let K =(Q, Qu, 9, L) be a Kripke structure.

@ Given a state g € Q and a CTL formula f, define the
satisfaction relation K, q = f as follows

o

¢ ¢ ¢ ¢

K,q = apifapc L(q)

K,gE=~fifnot K,qE=f
K,gefvgifK,gefo K gkg

K,q E EXfif K,q' = f for some ¢’ with g — ¢

K,q E A(fUg) if K, 7 | fUg for all computation path 7
from g

K,q = E(fUg) if K, 7 |= fUg for some computation path
w from g

@ We will use the following abbreviation

f
EFf
EGf

= -EX-f AFf = A(trueUf)
= E(trueUf) AGf = -EF-f
= AF-f



e © © 6 ¢ © ¢ ¢ ¢

K,q |= ap: ap holds at ¢

K,q = AXf: f holds at the next position in all paths

K, q = EXf: f holds at the next position in some paths
K, q = AFf: f holds for all paths from g eventually

K,q = EFf: f holds for some path from g eventually
K,q = AGf: f always holds for all paths from ¢

K,q = EGf: f always holds for some path from ¢

K,q E A(fUg): f holds until g holds for all paths from ¢
K,q E E(fUg): f holds until g holds for some path from
q



Basic Properties

@ LTL and CTL are not comparable

@ There is a property on some Kripke structure, which is
expressible by LTL but not CTL and vice versa

@ FGa holds for all computation paths from gqq
@ but AFAGa does not hold on gq




Automata Theory

@ Finite State Automata and Regular Languages
@ a simple model accepts finite strings
@ w-Automata and w-Regular Languages
@ an extension of simple model accepts infinite strings




Strings and Languages

Consider a set of alphabets

A string « is a finite sequence of symbols ajay - - a,
@ a, abc, verification, ...

The length of a string & = a1ax---apis n

The string of length 0 is called empty string and denoted
by €

The set of all strings over X is denoted by 2*

A subset of X* is called a language




@ A finite state automaton (or finite state machine) is a
tuple M = (¥, Q, Qo, 0, F) where
o X is a finite set of alphabets,
Q@ is a finite set of states;
Qo C Q is the set of initial states;
0 C Q XX x Qis a (total) transition relation; and
F C Q is a set of final states.

¢ € ¢ ¢

o We will write ¢ -2 ¢’ for (g,a,q’) €6

@ If |Qo| =1 and ¢ is in fact a function from Q x X to Q,
we say the automaton is deterministic



Runs and Acceptance

Let M = (X, Q, Qo, 0, F) be a finite state automaton and
Q= 3aidz---ap

A run for & on M is a squence of states pgps - - - pn such
that

° Po E?Qo;

o pi— piy1 for0<i<n

The set of runs for &« on M is denoted by Runp(«)

The string « is accepted by M if there is a run
pop1 - -+ Pn € Runp(e) such that p, € F

The language accepted by M is denoted by L(M)




he@ped

o M= ({a, b}’ {q07 q1}7 {q0}767 {qO}) where
i QO—3>CI1; QOLHJO; Q1i>%; Q1L>CI1

@ L(M) ={a: a occurs even number of times in a}




Basic Properties

@ Nondeterminism does not increase expressiveness

o A language is accepted by a deterministic finite state
automaton if and only if it is accepted by a
nondeterministic finite state automaton

@ The class of languages accepted by finite state automaton
is the class of regular languages

o RR'\, R+R', R*, R




Infinite Strings and Languages

@ An w-string o is an infinite sequence of symbols
5152...Sn...
@ aa---, 0100011011 ---, ...
@ The set of all w-strings over X is denoted by >“

@ A subset of X“ is called an w-language




Automata to w-Automata

@ How to make finite state automata accept w-strings?

o M= (%,Q,Q,0,F) : a finite state automaton
@ A runfor o = s15---s,--- on M is an infinite sequence
of states pipy -« - pp--- such that

° Po ES_QO
@ pj — piy1 for 0 <

@ How to define acceptance?
@ There is no “last” state in an infinite run




Let 0 = s15---5,--- be an w-string and
B =(%,Q, Qu,J, F) a finite state automaton
A run r for o on B is an infinite sequence of states
p1p2 -« Pn--- such that

° po ES'QO

o pi — pip1 for 0 <
Define Infg(r) to be the set of states which occur
infinitely many times in r
The Biichi acceptance condition for a run r requires
Infg(r)NF #£10
An w-string o is accepted by B if there is an r € Rung(o)
satisfying the Biichi acceptance condition
A finite state automaton using the Biichi acceptance
condition is called a Biichi automaton



he@ped

@ bb---,aabb---, ababb---, ...
@ abb---, babb---, ...

o L(M)={o:

there are infinitely many or even number of a in o}




Basic Properties

@ Deterministic Biichi automata is strictly less expressive
than nondeterministic ones
o The language {0 : o contains finitely many a's} is
accepted by a nondeterministic Biichi automaton but not
by any deterministic Biichi automaton.

a,b b




Proof

Suppose there is a deterministic Biichi automaton
B =(%,Q,{qo0},9, F) accepting the same language. Then

bro
there is an ng such that gqg — g for some g € F. Otherwise,
B would not accept b*, a contradiction. Similarly, there must

b ab"
be an n; such that qp et g for some g € F. Hence there

are ng,Ni,...,Nm,...such that
b"0 ab™ -..ab"m
q0 —
for some g € F. But the w-string b™ab™ --- ab™ ... contains

infinitely many a’s. O



@ A generalized Biichi Automaton B = (¥, Q, Qo, 0, F)
consists of

o X, a finite set of alphabets

@, a finite set of states

Qo C Q, the set of initial states

0 C QX X x Q, the transition relation
F C 29, afinite class of accepting sets

¢ € ¢ ¢

@ The generalized Biichi acceptance condition for a run r
requires Infg(r)NF # Q for all F € F

@ An w-string o is accepted by B if there is an r € Rung(o)
satisfying the generalized Biuichi acceptance condition

@ A finite state automaton using the generalized Biichi
acceptance condition is called a generalized Blichi
automaton



Let B = (X, Q, Qo, 0, F) be a Biichi automaton. It is easy
to see that Gg = (X, Q, Qo, 0, {F}) is a generalized Biichi
automaton accepting the same language
Conversely, let G = (X, Q, Qo, 9, F) be a generalized
Biichi automaton with F = {Fo, F1,..., Fo_1}
Construct Bg = (X, Q@ x N, Qy x {0},¢, @ x {0}) as
follows

((q7 m),s,(q’,m’")) € &' if and only if

o (g,5,q')€d

m if g & Fn
m+1modn ifq €F,
Intuitively, we iterate through all accepting sets by a
counter
A run visits all accepting sets infinitely many times if and
only if the counter resets to 0 infinitely many times
Bilichi automata have the same expressive power as
generalized Biichi automata

om:



LTL Model Checking Problem

o Let K =(Q, Qu, 9, L) be a Kripke structure and f an LTL
formula. We write K |=f if K, m |= f for all computation
paths 7w from a state in Qg

@ Given a Kripke structure K = (Q, Qo, 9, L) and an LTL

formula f, the LTL model checking problem is to decide

whether K |= f




Automata-Theoretic Approach

@ The idea is to reduce the LTL model checking problem to
the language containment problem in automata theory
o Intuitively, we will
o translate any Kripke structure to an automaton;
@ translate any LTL formula to another automaton;
o check whether the language accepted by the former

automaton is contained in the language accepted by the
latter




Consider any Kripke structure K = (Q, Qo, 4, L)
Let X pp = 2AP
We will construct a Biichi automaton accepting a
w-language in X%,
Define Bx = (ZA,D, QU {L}, {L}, o, Q)
@ ¢ is a new state not in Q
o (q,5,q')ed" if s=L(q') and (g,5,¢') €9
o (t,50,q0) € 8" if s = L(go) and go € Qo
The alphabets are in fact the set of atomic propositions
satisfied in the target state

Any computation path in K corresponds to an w-string
over X aop accepted by Bk and vice versa. Precisely,

L(Bk) = {L(r) : 7 is a computation path from gqo € Qo}-



From LTL to Buchi Automata

@ For any LTL formula f, we would like to construct a Biichi

automata Br over ¥ 4p accepting all w-strings satisfying f

@ Hence to check whether K, 7 |= f for all m from some
state in Qp is equivalent to checking L(Bk) C L(Br)




Fischer-Ladner Closure

@ Let f be an LTL formula. The Fischer-Ladner closure
C(f) is defined as follows (we identify —~—f" with f’).

C(f) = {f',~f": f"is a subformula of f}
@ For example,

C(aUb) = {aUb, =(aUb), a, ~a, b, b}




@ Let f be an LTL formula. A subset D of C(f) is healthy if
it satisfies the following conditions

for all f' € C(f), either f' € D or =f' € D;

if fj vl € C(f), then fy vV € Diff fy € D or f{ € D;

if f'Ug’ € D, then g’ € D or f' € D;

if f'Ug’ € C(f) & D, then g’ ¢ D.

©

¢ ¢ ¢




Automaton Br = (X ap, Q, Qo, d, F)

@ Q= {D: D is healthy in C(f)}
@ Q={DoeQ:feDy}
o (D,s,D")edif
s=DnNAP;
if Xf" € D, then f' € D’;
if Xf' € C(f) ¢ D, then f' ¢ D’;
if f’'Ug’ € D and g’ ¢ D, then f'Ug’ € D’; and
if f'Ug’ € C(f) ¢ D and ' € D, then f'Ug’ ¢ D’.
o F={Fo,F1,...,Fn} where
Fi={D:f/Ug & D or g’ € D} and fjUg{, f/Ugi,
.., f/Ug,, are all subformulae of this form in C(f)

©

¢ ¢ ¢ ¢




e C(aUb) = {aUb,—~(aUb), a,~a, b, b}

@ All subsets are ), {a}, {b}, {aUb}, {a, b}, {a,aUb},
{b,aUb}, and {a, b,aUb} All subsets are 0, {a}, {b},
{aUb}, {a, b}, {a,aUb}, {b,aUb}, and {a, b, aUb}




laUb
(@Ub)+(laUb)

o C((aUb) v (—aUb)) = {(aUb) Vv (—aUb),—~((aUb) v
(—aUb)), aUb, —(aUb), —aUb, ~(—aUb), a, ~a, b, ~b}
@ Healthy subsets are {}, {a}, {(aUb) Vv (-aUb), aUb, a},
{(aUb) v (—aUb), ~aUb},
{(aUb) Vv (—aUb), aUb, —aUb, b},
{(aUb) v (—aUb), aUb, —aUb, a, b}
o Why is {(aUb) V (-aUb), aUb, b} not healty?



Checking Language Containment

@ For any LTL formula f, L(By) contains all w-strings over
> ap satisfying f

@ For any Kripke structure K, L(Bk) contains all w-strings
over ¥ 4p corresponding some computation path in K
from an initial state

@ It remains to check whether L(Bk) C L(Bf)

@ Observe that L(Bk) C L(Bs) if and only if
L(Bk)NL(Bf) =0




How to check L(Bk) N L(By)

@ How to compute L(Bf)?
@ How to check L(Bk) N L(Bf) =0?




@ Let M be a finite state automaton. lts complement
automaton, M, is a finite state automaton such that
L(M) = L(M)

@ determize M and change the accepting states

@ Can we do it for Biichi automata?
@ Not directly. Deterministic Bilichi automata is strictly less
expressive than Biichi automata

@ A more general deterministic w-automata is required
@ Alas, it is rather complicated



Computing L(Br) (cont'd)

@ Fortunately, there is an easy way out

@ Observe that a computation path 7 satisfies f if and only
if it does not satisfy —f

@ Hence L(Bf) = L(B-f)

o Complementation of Biichi automata is not needed!




Checking L(By) N L(By) = 0

@ Let MC and M! be finite state automata
@ How to check L(M%) N L(M*) = 0?
@ construct product automaton M° x M! and check if
L(MO x M) =
@ Can we do it for Biichi automata?

@ Yes!




Product Automata B° x B!

o Let BY = (%, QO QO,60 FO) and Bl = (%, Ql QO,61 Fl)
be Biichi automata
@ Define B x B! as follows.

2 is its alphabets

Q% x Q! x {0,1,2} are its states

Q% x Q¢ x {0} are the initial states

Q% x Q! x {2} are the accepting states
Moreover (p°, rt, x) LN (q°, st y) if

©

¢ ¢ ¢ ¢

o p° " q%in B;

o rt i»l s'in B: and
if x=0and q° € F°
if x=1and s’ € F!
ifx=2
otherwise

Oy:

X O N




Example of Product Automata

a
Product Biichi Automaton




Automata-Theoretic LTL Model Checking
Algorithm

Input: a Kripke structure K and an LTL formula f
Output: whether K |= f
@ Construct Bk and B_f for K and —f respectively

@ Check whether L(Bk x B_f) =0

o if so, return PASS
o otherwise, return FAIL




CTL Model Checking Problem

o Let K =(Q, Qu, 9, L) be a Kripke structure and f a CTL
formula. We write K =1 if K, qo |= f for all go € Qo
@ Given a Kripke structure K = (Q, Qp,d,L) and a CTL

formula f, the CTL model checking problem is to decide
whether K |= f




o Let K =(Q, Qu, 9, L) be a Kripke structure and f a CTL
formula

o Let Q' C Q. Define

Prex(Q) = {q: thereisa ¢’ suchthat ¢ — ¢',q’ € Q'}
PREK(Q') = {qg: forall ¢’ suchthat g — ¢’,q' € Q'}

@ Define the function [f]k as follows.

[aplk = {q:ap€ L(q)}
[k = Q\I[fl«
[fvelk = [flkVlglk
[EXflx = Prex([f]x)
[A(fUg)lk = [&lk U ([flx N PREK([A(fUg)]k))
[E(fUg)]x = [glx U ([flx N Prex([E(fUg)]«))



Solving X = G(X)

A function G : 29 — 29 is monotonic if A C B implies
G(A) € G(B)
Define G; C Q as follows

Go = @ and G,'_|_1 = G(G,)

@ Facts

o G; C Gjqq forall i

o Gj = Gj41 implies Gj = G; forall j > i
Let f € N be that Gf = Gf+1. Then Gf = Gf_|_1 = G(Gf)
Gr is a fixed point of G
Let H C Q be that H = G(H). Then G; C H for all i.
Hence Gr C H. Gy is the least fixed point of G




Compute [A(fUg)]«

Define
G(X) = [elx U ([f]lx N PREK(X))

G : 29 — 29 is monotonic

If Q is finite, there is an f € N such that Gf = Gf41

Then Gr = [A(fUg)]«

[E(fUg)]k can be computed similarly




CTL Model Checking Algorithm

Input: a Kripke structure K and a CTL formula f
Output: whether K |= f

© Compute [f]k
@ Check Qo C [flk

o if so, return PASS
o otherwise, return FAIL

However, computing [f]k is not easy when |Q| is very
large

Can we compute [f]k efficiently (in practice)?




Decision Diagrams

o Let B = {false, true} be the Boolean domain
@ An n-ary binary function is a function from B” to B

@ Decision diagrams are representations for binary functions




From Decision Diagrams to Binary Decision
Diagrams

@ Binary decision diagrams are obtained by

@ merging identical nodes
@ removing redundant nodes

f(x,y,z) =xA(yVz)




Variable Order in BDD's

@ For any fixed variable ordering, the BDD representation is
canonical
o f =g ifand only if BDD(f) = BDD(g)
@ The size of BDD's depends on the order of variables
o finding optimal order is NP-hard

YA VIxAz)A(y V)




Let f and g be two n-ary binary functions. The following BDD
operations are available:

@ negation. not BDD(f) = BDD(—f)

@ conjunction. BDD(f) and BDD(g) = BDD(f A g)
disjunction. BDD(f) or BDD(g) = BDD(f V g)
universal quantification. forall x;BDD(f) = BDD(Vx;f)
existential quantification. exists x;BDD(f) = BDD(3x;f)

@ renaiming. BDD(f)[y/X] = BDD(f[x :=¥])



Evaluating QBF by BDD's

@ Given a Qualified Boolean Formula (QBF) f, one can
evaluate f as follows

o expand all qualifiers as mentioned

o construct BDD for the expanded formula

o return the resultant BDD (either false or true)
@ BDD’s can in fact determine the satisfiability or validity of
any propositional logic formula




BDD's and CTL Model Checking

@ Problems in the definition of [f] x in explicit-state CTL
model checking

o Set operations
o [fvelk =I[flxUlelx

o Prex(Q’) and PREK(Q')
@ functions over sets of states

o Fixed points
o [E(fUg)]k = [glx U ([f]x N Prex([E(fUg)]k))

@ Can we solve them by BDD's?




BDD and Set Operations

@ For simplicity, we only consider sets over binary vectors of
size n
e {000,010,100,110}
@ Characteristic function x y for set H is an n-ary binary
function such that x y(xn, Xa—1, .- ., x1) = true if and only
if xpxp_1---x1 € H
L4 X(X3aX2aX1) = X1
@ Set operations correspond to logical operations
* ) Xﬁo = —|)<H0
9 XHoUH; = XHo \ XH;
9 XHoﬁHl = XH() A XH]




Representing Transition Relations in BDD's

Let K = (Q, Qu, 9, L) be a Kripke structure. For simplicity,
assume |Q| = 2™ for some m

@ Each state g € @ can be represented by a binary vector of
size m

@ Each transition g — ¢’ is represented by a pair of binary
vector

@ Hence the transition relation ¢ is represented by a set of
binary vectors of size 2m




@ Consider K = ({q07 ai, ..., q7}7 {q0> a2, qa, q6}7 57 L) with
gdi = di+1 mod 8
o go =000, g1 = 001,...,q7 = 111
o XQ(x3,%2,x1) = 7x1
o Xo(x3, X0, X1, X5, X5, X1) =
—x3 Ao A A xE A xE A X
—x3 A —xa Axy \x§ A xh A x|\
—x3 Axa A —xy \x§ A xE A x|\
“x3 Axa Axt AX§ A -G A -]V
x3 A =xo A —xy Ax§ A g A xp
x3 A =xo Axi A XxE A x5 A —x
x3 Axo A—xa AxEAx5AX
x3 A xa A xy \ x5 A —xg A —xq
o x5(bs, bo, b1, b5, b, b}) = true if and only if
A(bsbyby), — Q(bybhb,), Where (7)2 denotes the number
represented by / in binary




Computing Prek(Q') and PREK(Q')

@ @ is a set of binary vectors

@ Recall
Prex(Q') = {q : thereis a ¢’ such that g — ¢, ¢’ € Q'}
o Let X/Q/ be the characteristic function obtained by
renaming each x to x" in x ¢
o Say, xor(x3,%2,x1) = —x1. Then X (x5, x5, x]) = —x{

@ By assumption, |Q| = 2". Hence

Xprew(@)(X) = X xs(X,X") A X
XPREx(Q')(X) X =(xs(%, %) A —xor)




Solving X = G(X) in BDD's

@ X is a set of binary vectors and G is a set function over
state sets

@ Y x can be represented by a BDD

@ G can be computed by BDD operations

@ We simply compute G; iteratively

Input: G a set function over state sets
Output: G its least fixed point

Q@i=0

Q G = BDD(xy)
Q do

Q@ i=i+1

Q@ G =0G(G-1)
@ while G,' 75 G,'_1
@ return G;




Symbolic CTL Model Checking

o Given K = (Q, Qo, 9, L)
@ Encode 6 and L in BDD's
@ xa(X)=1if and only if a € L(X)
@ Compute BDD(xf,)
@ Check if BDD(xq, A —~X[r14) = BDD(xp)

o if so, return PASS
o otherwise, return FAIL




Limitation of BDD's

@ Symbolic CTL model checking does not solve all our
problems
@ BDD's are hard to predicate
9 the size is very sensitive to variable ordering
@ BDD's cannot handle real systems
@ up to 300 binary variables

o Oftentimes, BDD's would blow up while building transition
relations

@ no information at all when it doesn’'t work

@ Techniques that can be scaled up are always needed




@ A CTL formula is in negative normal form if the negation
appears only before atomic propositions
o For instance, AF—p is in nnf but =EGp is not
o Write K, 7 |= fRg if for all j > 0, for all i < j K, (i) & f
implies K, 7(j) = g
o Observe that fRg = —(~fU—g)
@ All CTL formula can be transformed to its negative normal
form
o Use ~=f=f, =(fVg)=—FfA-g, -(fANg)=—-fV g,
~AXf = EX~f, -EXf = AX~f, ~E(fUg) = A(~fR—g),
-A(fUg) = E(~fR—-g)
@ ACTL is a subclass of CTL, where only universal path
quantifier is allowed in negative normal form
o AGp and —E(fUg) are in ACTL but EGp and AGEFp are
not



(]

(]

(4

(]

Consider a propositional logic formula, say,
[p—(qVvrlnlgVv—r
A truth assignment is a mapping from propositional
variables (p, g, r, etc) to Boolean domain
A propositional logic formula is satisfiable if there is a
truth assignment that makes the formula evaluate to true
o For instance, the above formula can be satisfied by setting
p = false, g = true, and r = true
A propositional logic formula is valid if for all truth
assignment, the formula evaluates to true
o For instance, the above formula evaluates to false when
p = true, g = false, and r = false. It is not valid
For any propositional formula f, f is not satisfiable if and
only if =f is valid



@ Given a propositional logic formula, determine whether
there is a satisfying truth assignment

@ First NP-complete problem

@ Since mid 90's, many practical SAT solvers are available
@ by “practical”, we mean SAT solvers that can handle
thousands of binary variables!
@ widely used SAT solvers are MiniSAT, zchaff, grasp
@ We will use SAT solvers to solve ACTL model checking
within bounded steps



Bounded Model Checking

@ The idea is to verify the Kripke structure up to a fixed
number of steps

@ Equivalently, bounded model checking aims to find bugs
within a fixed number of steps

o if bugs are found, bounded model checker reports them
o if bugs cannot be found in the first n steps, it does not
guarantee the correctness of the Kripke structure




Consider the formula AXp on the Kripke structure K
What is a bug in K7

By definition K = AXp if K, qo = —=AXp for some
qo € Qo

Hence our goal is to find a gg € Qp such that
K,qo = EX-p

@ Can it be done by SAT solvers?

@ Yes! Checking the satisfiability of the following formula
suffices.

° xX@(Xo) A xs(X0,X1) A ~xp(X1)
What about verifying EXp?

o Not directly. Checking the satisfiability of
[xq,(X0) A xs(Xo,X1)] — —Xxp(X1) does not work. Why?



SAT Solvers and ACTL Bounded Model Checking

@ Let f be an ACTL formula

@ —f is equivalent to a CTL formula where only existential
path quantifiers occur

o for instance, ~AGAFp = EFEG—p
@ It suffices to find a go € Qp such that K, qo E —f

¢ if so, a bug is found and can be reported
o if not, we conclude there is no bug up to the bound




o Let K = (Q, Qou, 9, L) be a Kripke structure with |Q| = 2™
@ Consider verifying K = AGa up to the first 3 steps
@ We hence try to find a qo € Qp such that K, go = EF—a
@ Consider the following propositional formula
F3(Xo,X1,X2,X3)
= X@(%o) A xa(%0) \/
XQo(X0) A xs(X0,X1) A —xa(X1) \/
X@o(X0) A X5 (X0, X1) A xs(%1,X2) A =xa(%2) \/
XQo(X0) A X6 (X0, X1) A x5(X1,X2) A x6(X2,X3) A —xa(X3)
@ Then F3(Xo, X1,X2,X3) is satisfiable if and only if there is

a state g reachable from some gg € Qg in three steps such
that a & L(q).



@ Pros

o Partial information. Even though we cannot verify the
system, we do know it is correct up to a certain number of
steps

@ Scalability. Modern SAT solvers can handle thousands of
binary variables. We can check larger systems

o Cons

o A bit tricky to verify systems for sure. Extending bounded
model checking to model checking is not straightforward

@ Does not work well for general CTL formulae. Alternation
of universal and existential path quantifiers causes
problems



@ It is a bit tricky to verify ACTL by SAT solvers completely
@ We will introduce a complete SAT-based verification
algorithm for invariant checking

@ An invariant is an atomic proposition which is satisfied in
all states reachable from initial states

@ ais an invariant if and only if AGa and Ga hold

@ We will apply inductive reasoning in invariant checking!



@ Consider verifying AGa on K = (Q, Qo, 9, L)
@ Suppose we know the following

o a€ L(qo) forall go € Qo
o for all g and ¢’ such that ¢ — ¢, a € L(q) implies
ael(q)
@ Can we conclude K = AGa?

o Yes!

Proof.

If K = AGa, there is a qo, g1, ---,9m € Q such that
@ g0 € Qo
@ g —qgir1for0<i<m
o acL(qi) for0<i< mbuta¢L(gm)

Then g, € Qo by the basis. Moreover, a € L(qn,) for a € L(gm-1)
and gn—1 — gm by inductive step

O

ot



From Induction to k-Induction

@ The idea can be generalized to more than one step
e ac L(qg;) forall gi € Q and 0 < J < k where

Q=1{q¢ 90— q — - — q; for some qo € Qo}

e a€ l(gi) for 0 < i< kimplies a € L(qk) where
gi — qiy1 for 0 < i < k

@ How can we perform k-induction by SAT solvers




@ Consider the following two SAT problems
® X@(¥X0) A —xa(Xo)
o Xa(¥o) A Xs(¥0,¥1) A —Xa(¥1)
@ What do they mean if they are not satisfiable?
@ it's impossible to have an initial state not satisfying a
@ all initial states satisfy a

o it's impossible to reach a state not satisfying a from a
state satisfying a

@ any state satisfying a can only go to states satisfying a
@ Hence, if these propositional logic formulae are
unsatisfiable, we conclude a is an invariant



k-Induction by SAT Solvers

@ The technique can be generalized to k-induction
@ Consider the following propositional logic formulae

X (X0) A =xa(Xo)
X (X0) A X5(Xo0, X1) A =xa(X0)

<

XQ(X0) A x5(Xo,X1) A -+ - X5(Xk—2, Xk—1) A =Xa(Xk—1)

Xa(¥0) A Xs(¥o, Y1) Axa(V1) A Xxs(V1,¥2) A Xa(Vi—1) A

X6 (V=1 k) N\ "xa(Vi)

o If all of them are unsatisfiable, we conclude a is an
invariant

¢ ¢ ¢ ¢

o what if some of them are satisfiable?




@ When k-induction fails, there are two possibilities
@ some of basis formulae are satisfiable
9 X@(X0) A —xa(X0), Xao(X0) A X5(X0,X1) A =xa(X0), - -
@ a counterexample is found!
o the inductive formula is satisfiable
o Xa(¥o) Axs (Yo, ¥1) Axa(¥1) Axs(V1,¥2) A+ xa(Vie1) A
X6 (Vi—1,¥k) N\ ~xa(V)
@ If the inductive step is satisfiable, one increases k and
performs k + 1-induction
@ if a is not an invariant, there is a k such that k-induction
fails in the basis
@ the basis will be satisfiable for some k
o what if a is indeed an invariant?
@ can we always establish invariance by induction? not
necessarily!



@ If the basis formulae are not satisfiable but the inductive
formula is satisfiable, when can we conclude the invariant
checking passes?

o |dea: the shortest counterexample cannot be longer than
the diameter of reachability graph

@ The reachability graph consists of states as nodes and
transitions as edges

Let k be the diameter of reachability graph. Consider
Go — q1 — -+ — qx — Qk+1. Then g; = g; for some
0<i<j<k+1. Hence

Go—q1— " ——qi ——Qj41 — - — Qkt+1 1S a

shorter computation path to g1 ]



From Induction to Complete Induction (cont'd)

o It suffices to find the diameter of reachability graph

@ Consider the following formula

X Qo (X0) A\

X5(X0,X1) A X1 # Xo /\

X5(X1,X2) AN X2 # Xo AN X2 # X1 \

X6(Xk—1,Xk) A Xk # Xo AN Xk # X1 A -+ ANXg # Xk—1

o If the formula is unsatisfiable for some k, we know the
diameter of reachability graph is k — 1




Complete SAT-based Invariant Checking

@ Here is the algorithm
Input: K =(Q, Qo,d,L) and an atomic proposition a
Output: whether a is an invariant in K

QD k=1

Q loop

(%] perform k-induction

Q if a counterexample is found, return FAIL

Q if the diameter is k, return PASS

Q k=k+1




We have introduced
@ both LTL and CTL

@ an automata-theoretic LTL model checking algorithm
@ a BDD-based CTL model checking algorithm

@ a SAT-based invariant checking algorithm

@ SpIN and NUSMV




Current Research

@ Finite-state models to infinite-state models
@ context-free processes and pushdown systems

@ Proof theory 4+ model checking = 7
@ Computational learning theory

@ SAT-based model checking algorithm for universal
p-calculus




