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Prelude: the Coffee Can Problem

Initially : a coffee can contains some black beans and
some white beans.

Action : the following steps are repeated as many times
as possible.
1. Pick any two beans from the can.
2. If they have the same color, put another black bean

in. (Assume there is a sufficient supply of additional
black beans.)

3. Otherwise, put the white bean back in and throw the
black one away.

Finally : only one bean remains in the can.

Question : what can be said about the color of the last
remaining bean?
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The Coffee Can Problem as a Program

B,W := m,n; // m > 0 ∧ n > 0
do B ≥ 0 ∧ W ≥ 2 → B,W := B + 1,W − 2 // both white
[] B ≥ 2 ∧ W ≥ 0 → B,W := B − 1,W // both black
[] B ≥ 1 ∧ W ≥ 1 → B,W := B − 1,W // different colors

od

What are the values of B and W , when the program
terminates?

Will the program actually terminate?
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Invariants and Rank Functions

An invariant captures something that is never changed
by the program.

A rank function (or variant function) measures the
progress made by the program.

For the Coffee Can problem,
(Loop) Invariant: the parity of the number of white
beans never changes, i.e., W ≡ n (mod 2). (in
addition, B + W ≥ 1)
Rank Function: the total number of beans, i.e.,
B + W .
The do loop decrements the rank function by one in
each iteration and eventually terminates when
B + W = 1 (i.e., B = 0 ∧ W = 1 or B = 1 ∧ W = 0).
So, what is the color of the remaining bean?
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An Axiomatic View of Programs

The properties of a program can, in principle, be found
out from its text by means of purely deductive
reasoning.

The deductive reasoning involves the application of
valid inference rules to a set of valid axioms.

The choice of axioms will depend on the choice of
programming languages.

We shall introduce such an axiomatic approach, called
the Hoare logic, to program correctness.
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Assertions

When executed, a program will evolve through different
states, which are essentially a mapping of the program
variables to values in their respective domains.

An assertion is a precise statement about the state of a
program.

Most interesting assertions can be expressed in a
first-order language.
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Pre and Post-conditions

The behavior of a “structured” (single-entry/single-exit)
program statement can be characterized by attaching
assertions at the entry and the exit of the statement.

For a statement S, this is conveniently expressed as a
so-called Hoare triple, denoted {P} S {Q}, where

P is called the pre-condition and
Q is called the post-condition of S.

Deductive Program Verification at FLOLAC 2007: Hoare Logic (I) [July 10] – 7/44



IM NTU

Interpretations of a Hoare Triple

A Hoare triple {P} S {Q} may be interpreted in two
different ways:

Partial Correctness : if the execution of S starts in a
state satisfying P and terminates, then it results in a
state satisfying Q.
Total Correctness : if the execution of S starts in a
state satisfying P , then it will terminate and result in
a state satisfying Q.

Note: sometimes we write 〈P 〉 S 〈Q〉 when total correctness
is intended.
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Pre and Post-Conditions for Specification

Find an integer approximate to the square root of
another integer n:

{0 ≤ n} ? {d2 ≤ n < (d + 1)2}

or slightly better

{0 ≤ n} d := ? {d2 ≤ n < (d + 1)2}

Find the index of value x in an array b:
{x ∈ b[0..n − 1]} ? {0 ≤ i < n ∧ x = b[i]}

{0 ≤ n} ? {(0 ≤ i < n∧x = b[i])∨ (i = n∧x 6∈ b[0..n− 1])}

Note: there are other ways to stipulate which variables are
to be changed and which are not.
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A Little Bit of History

The following seminal paper started it all:

C.A.R. Hoare. An axiomatic basis for computer
programs. CACM, 12(8):576-580, 1969.

Original notation: P {S} Q (vs. {P} S {Q})

Interpretation: partial correctness

Provided axioms and proof rules

Note: R.W. Floyd did something similar for flowcharts
earlier in 1967, which was also a precursor of “proof
outline” (a program fully annotated with assertions).
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The Assignment Statement

Syntax:
x := E

Meaning: execution of the assignment x := E (read as
“x becomes E”) evaluates E and stores the result in
variable x.

We will assume that expression E in x := E has no
side-effect (i.e., does not change the value of any
variable).

Which of the following two Hoare triples is correct about
the assignment x := E?

{P} x := E {P [E/x]}

{Q[E/x]} x := E {Q}

Note: E is essentially a first-order term.
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Some Hoare Triples for Assignments

{x > 0} x := x − 1 {x ≥ 0}

{x − 1 ≥ 0} x := x − 1 {x ≥ 0}

{x + 1 > 5} x := x + 1 {x > 5}

{5 6= 5} x := 5 {x 6= 5}
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Axiom of the Assignment Statement

(Assignment)
{Q[E/x]} x := E {Q}

Why is this so?

Let s be the state before x := E and s′ the state after.

So, s′ = s[x := E] assuming E has no side-effect.

Q[E/x] holds in s if and only if Q holds in s′, because
every variable, except x, in Q[E/x] and Q has the
same value in s and s′, and
Q[E/x] has every x in Q replaced by E, while Q has
every x evaluated to E in s′ (= s[x := E]).
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The Multiple Assignment Statement

Syntax:
x1, x2, · · · , xn := E1, E2, · · · , En

where xi’s are distinct variables.

Meaning: execution of the multiple assignment
evaluates all Ei’s and stores the results in the
corresponding variables xi’s.

Examples:
i, j := 0, 0 (initialize i and j to 0)
x, y := y, x (swap x and y)
g, p := g + 1, p− 1 (increment g by 1, while decrement p
by 1)
i, x := i + 1, x + i (increment i by 1 and x by i)
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Some Hoare Triples for Multi-assignments

Swapping two values
{x < y} x, y := y, x {y < x}

Number of games in a tournament
{g + p = n} g, p := g + 1, p − 1 {g + p = n}

Taking a sum
{x + i = 1 + 2 + · · · + (i + 1 − 1)}

i, x := i + 1, x + i

{x = 1 + 2 + · · · + (i − 1)}
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Simultaneous Substitution

P [E/x] can be naturally extended to allow E to be a list
E1, E2, · · · , En and x to be x1, x2, · · · , xn, all of which are
distinct variables.

P [E/x] is then the result of simultaneously replaying
x1, x2, · · · , xn with the corresponding expressions
E1, E2, · · · , En; enclose Ei’s in parentheses if necessary.

Examples:
(x < y)[y, x/x, y] = (y < x)

(g + p = n)[g + 1, p − 1/g, p] = ((g + 1) + (p − 1) = n) =
(g + p = n)

(x = 1 + 2 + · · · + (i − 1))[i + 1, x + i/i, x]
= ((x + i) = 1 + 2 + · · · + ((i + 1) − 1))
= (x + i = 1 + 2 + · · · + ((i + 1) − 1))
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Axiom of the Multiple Assignment

Syntax:
x1, x2, · · · , xn := E1, E2, · · · , En

where xi’s are distinct variables.

Axiom:

(Assign.)
{Q[E1, · · · , En/x1, · · · , xn]} x1, · · · , xn := E1, · · · , En {Q}
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Assignment to an Array Entry

Syntax:
b[i] := E

Notation for an altered array: (b; i : E) denotes the array
that is identical to b, except that entry i stores the value
of E.

(b; i : E)[j] =







E if i = j

b[j] if i 6= j

Axiom:

(Assignment)
{Q[(b; i : E)/b]} b[i] := E {Q}
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Pre and Post-condition of a Loop

A precondition just before a loop can capture the
conditions for executing the loop.

An assertion just within a loop body can capture the
conditions for staying in the loop.

A postcondition just after a loop can capture the
conditions upon leaving the loop.
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A Simple Example

{x ≥ 0 ∧ y > 0}
while x ≥ y do

{x ≥ 0 ∧ y > 0 ∧ x ≥ y}
x := x − y

od
{x ≥ 0 ∧ y > 0 ∧ x 6≥ y}
// or
{x ≥ 0 ∧ y > 0 ∧ x < y}
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More about the Example

We can say more about the program.

// may assume x, y := m,n here for some m ≥ 0 and n > 0
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

x := x − y
od
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y)) ∧ x < y}

Note: repeated subtraction is a way to implement the
integer division. So, the program is taking the residue of x
divided by y.
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A Simple Programming Language

To study inference rules of Hoare logic, we consider a
simple programming language with the following syntax
for statements:

S ::= skip

| x := E

| S1;S2

| if B then S fi

| if B then S1 else S2 fi

| while B do S od
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Proof Rules

{Q[E/x]} x := E {Q} (Assignment)

{P} skip {P} (Skip)

{P} S1 {Q} {Q} S2 {R}

{P} S1;S2 {R}
(Sequence)

{P ∧ B} S1 {Q} {P ∧ ¬B} S2 {Q}

{P} if B then S1 else S2 fi {Q}
(Conditional)

“if B then S fi” can be treated as “if B then S else skip fi” or
directly with the following rule:

{P ∧ B} S {Q} P ∧ ¬B → Q

{P} if B then S fi {Q}
(If-Then)
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Proof Rules (cont.)

{P ∧ B} S {P}

{P} while B do S od {P ∧ ¬B}
(while )

P → P ′ {P ′} S {Q′} Q′ → Q

{P} S {Q}
(Consequence)

Note: with a suitable notion of validity, the set of proof rules
up to now can be shown to be sound and (relatively)
complete for programs that use only the considered
constructs.
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Some Auxiliary Rules

P → P ′ {P ′} S {Q}

{P} S {Q}
(Strengthening Precondition)

{P} S {Q′} Q′ → Q

{P} S {Q}
(Weakening Postcondition)

{P1} S {Q1} {P2} S {Q2}

{P1 ∧ P2} S {Q1 ∧ Q2}
(Conjunction)

{P1} S {Q1} {P2} S {Q2}

{P1 ∨ P2} S {Q1 ∨ Q2}
(Disjunction)
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Invariants

An invariant at some point of a program is an assertion
that holds whenever execution of the program reaches
that point.

Assertion P in the rule for a while loop is called a loop
invariant of the while loop.

An assertion is called an invariant of an operation (a
segment of code) if, assumed true before execution of
the operation, the assertion remains true after execution
of the operation.

Invariants are a bridge between the static text of a
program and its dynamic computation.
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Program Annotation

Inserting assertions/invariants in a program as
comments helps understanding of the program.

{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

{x ≥ 0 ∧ y > 0 ∧ x ≥ y ∧ (x ≡ m (mod y))}
x := x − y
{y > 0 ∧ x ≥ 0 ∧ (x ≡ m (mod y))}

od
{x ≥ 0 ∧ y > 0 ∧ (x ≡ m (mod y)) ∧ x < y}

A correct annotation of a program can be seen as a
partial proof outline for the program.

Boolean assertions can also be used as an aid to
program testing.
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An Annotated Program

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

while x 6= 0 and y 6= 0 do
{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

if x < y then x, y := y, x fi;
{x ≥ y ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

x := x − y

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

od
{(x = 0 ∧ y ≥ 0 ∧ y = gcd(x, y) = gcd(m,n))∨

(x ≥ 0 ∧ y = 0 ∧ x = gcd(x, y) = gcd(m,n))}

Note: m and n are two arbitrary non-negative integers, at least
one of which is nonzero.
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Programming with Invariants

Think about invariants at the beginning.

Invariants capture the dynamic computation that we
intend to realize by the static text of a program.

They can guide us through the program development.
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Developing a Search Program

Consider a table that supports two operations: insert(x)
and find(x).

Elements are inserted from left to right, starting at
position 1.

?

0

?

1

?

n

?

limit

� -used � -free

An invariant for the table:
The elements of the table are stored in the
sub-array A[1..n], for 0 ≤ n, and 0 ≤ n ≤ limit .
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Developing a Search Program (cont.)

?

0

?

1

?

n

?

limit

� -used � -free

Operation find(x) returns 0 if x is not in the table;
otherwise, it returns the position in the table at which x
was inserted most recently.
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Developing a Search Program (cont.)

Initial code sketch:

initialization;
do the search;
{ (x is not in the table, i.e., not in A[1..n]) or

(the most recent x is A[i] and 0 < i ≤ n) }
if x is not in the table then

found := 0
else

found := i
fi
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Developing a Search Program (cont.)

Simplified computation of the result, with the help of a
sentinel (an x stored in A[0] before the search):

initialization; // set the sentinel here
do the search;
{ x equals A[i] and x is not in A[i + 1..n] and 0 ≤ i ≤ n }
found := i
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Developing a Search Program (cont.)

Rewrite the assertion in a more formal way:

initialization; // set the sentinel here
do the search;
{x = A[i] ∧ x 6∈ A[i + 1..n] ∧ 0 ≤ i ≤ n}
found := i
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Developing a Search Program (cont.)

Making the sentinel explicit:

A[0] := x;
further initialization;
{x = A[0] ∧ x 6∈ A[i + 1..n] ∧ 0 ≤ i ≤ n}
do the search;
{x = A[0] ∧ x 6∈ A[i + 1..n] ∧ 0 ≤ i ≤ n ∧ x = A[i]}
found := i
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Developing a Search Program (cont.)

Refining the search step:

A[0] := x;
further initialization;
{x = A[0] ∧ x 6∈ A[i + 1..n] ∧ 0 ≤ i ≤ n}
while x 6= A[i] do

i := i − 1
od ;
{x = A[0] ∧ x 6∈ A[i + 1..n] ∧ 0 ≤ i ≤ n ∧ x = A[i]}
found := i
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Developing a Search Program (cont.)

Final developed program fragment:

A[0] := x;
i := n;
{x = A[0] ∧ x 6∈ A[i + 1..n] ∧ 0 ≤ i ≤ n}
while x 6= A[i] do

i := i − 1
od ;
{x = A[0] ∧ x 6∈ A[i + 1..n] ∧ 0 ≤ i ≤ n ∧ x = A[i]}
found := i
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Total Correctness: Termination

All inference rules introduced so far, except the while
rule, work for total correctness.

Below is a rule for the total correctness of the while
statement:

{P ∧ B} S {P} {P ∧ B ∧ t = Z} S {t < Z} P → (t ≥ 0)

{P} while B do S od {P ∧ ¬B}

where t is an integer-valued expression (state function)
and Z is a “rigid” variable that does not occur in P , B, t,
or S.

The above function t is called a rank (or variant)
function.
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Termination of a Simple Program

g, p := 0, n; // n ≥ 1
while p ≥ 2 do

g, p := g + 1, p − 1
od

Loop Invariant: (g + p = n) ∧ (p ≥ 1)

Rank (Variant) Function: p

The loop terminates when p = 1 (p ≥ 1 ∧ p 6≥ 2).
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Well-Founded Sets

A binary relation � ⊆ A × A is a partial order if it is
reflexive: ∀x ∈ A(x � x),
transitive: ∀x, y, z ∈ A((x � y ∧ y � z) → x � z), and
antisymmetric: ∀x, y ∈ A((x � y ∧ y � x) → x = y).

A partially ordered set (W,�) is well-founded if there is
no infinite decreasing chain x1 ≻ x2 ≻ x3 ≻ · · · of
elements from W . (Note: “x ≻ y” means “y � x ∧ y 6= x”.)

Examples:
(Z≥0,≤)

(Z≥0 × Z≥0,≤),
where (x1, y1) ≤ (x2, y2) if (x1 < y1) ∨ (x1 = y1 ∧ x2 ≤ y2)
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Termination by Well-Founded Induction

Below is a more general rule for the total correctness of the
while statement:

{P ∧ B} S {P} {P ∧ B ∧ δ = D} S {δ ≺ D} P → (δ ∈ W )

{P} while B do S od {P ∧ ¬B}

where (W,�) is a well-founded set, δ is a state function, and
D is a “rigid” variable ranged over W that does not occur in
P , B, δ, or S.
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Nondeterminism

Syntax of the Alternative Statement:
if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

fi

Each of the “Bi → Si”s is called a guarded command,
where Bi is the guard of the command and Si the body.

Semantic: one of the guarded commands, whose guard
evaluates to true, is nondeterministically selected and
its body executed. If none of the guards evaluates to
true, then the execution aborts.
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Rule for the Alternative Statement

The Alternative Statement:

if B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

fi

Inference rule:

P → B1 ∨ · · · ∨ Bn {P ∧ Bi} Si {Q}, for 1 ≤ i ≤ n

{P} if B1 → S1[] · · · [] Bn → Sn fi {Q}
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