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Prelude
Preliminaries

The Expand/Reduce Transformation

So I Was Asked...

I “So, you write programs, right? Then what happens?”

I I had to explain that my research is more about how to
construct correct programs.

I Correctness: that a program does what it is supposed to do.

I “What do you mean? Doesn’t a program always does what it
is told to do?”
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Maximum Segment Sum

I Given a list of numbers, find the maximum sum of a
consecutive segment.

I [−1, 3, 3,−4,−1, 4, 2,−1] ⇒ 7
I [−1, 3, 1,−4,−1, 4, 2,−1] ⇒ 6
I [−1, 3, 1,−4,−1, 1, 2,−1] ⇒ 4

I Not trivial. However, there is a linear time algorithm.

I

−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up + right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right
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A Simple Program Whose Proof is Not

I The specification: max { sum (i , j) | 0 ≤ i ≤ j ≤ N }, where
sum (i , j) = a[i ] + a[i + 1] + . . . + a[j ].

I The program:

s = 0; m = 0;
for (i=0; i<=N; i++) {

s = max(0, a[j]+s);
m = max(m, s);

}

I They do not look like each other at all!

I Moral: even “simple” programs are not that simple!

I When we are given only the specification, can we construct
the program?
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Verification v.s. Derivation

How do we know a program is correct with respect to a
specification?

I Verification: given a program, prove that it is correct with
respect to some specification.

I Derivation: start from the specification, and attempt to
construct only correct programs!

Theoretical development of one side benefits the other.
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Program Derivation

I Wikipedia: program derivation is the derivation a program
from its specification, by mathematical means.

I To write a formal specification (which could be
non-executable), and then apply mathematically correct rules
in order to obtain an executable program.

I The program thus obtained is correct by construction.
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A Typical Derivation

max { sum (i , j) | 0 ≤ i ≤ j ≤ N }
= {Premise 1}

max ·map sum · concat ·map inits · tails
= {Premise 2}

. . .

= {. . . }
The final program!
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It’s How We Get There That Matters!

Meaning of Life

= {Premise 1}
. . .

= {Premise 2}
. . .

= {. . . }
42!

The answer may be simple. It
is how we get there that
matters.
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Functions

I For the purpose of this lecture, it suffices to assume that
functional programs actually denote functions from sets to
sets.

I The reality is more complicated. But that is out of the scope
of this course.

I Functions can be viewed as sets of pairs, each specifies an
input-output mapping.

I E.g. the function square is specified by
{(1, 1), (2, 4), (3, 9) . . .}.

I Function application is denoted by juxtaposition, e.g. square 3.

I Given f :: α→ β and g :: β → γ, their composition
g · f :: α→ γ is defined by (g · f ) a = g (f a).
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Recursively Defined Functions

I Functions (or total functions) can be recursively defined:

fact 0 = 1,
fact (n + 1) = (n + 1)× fact n.

As a simplified view, we take fact as the least set satisfying
the equations above.

I As a result, any total function satisfying the equations above is
fact. This is a long story cut short, however!

I Applying fact to a value:

fact 3
= 3× fact 2
= 3× 2× fact 1
= 3× 2× fact 1
= 3× 2× 1× 1
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Natural Numbers and Lists

I Natural numbers: N = 0 | 1 + N.
I E.g. 3 can be seen as being composed out of 1 + (1 + (1 + 0)).

I Lists: data [a] = [ ] | a : [a].
I A list with three items 1, 2, and 3 is constructed by

1 : (2 : (3 : [ ])), abbreviated as [1, 2, 3].
I hd (x : xs) = x .
I tl (x : xs) = xs.

I Noticed some similarities?
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Binary Trees

For this course, we will use two kinds of binary trees: internally
labelled trees, and externally labelled ones:

I data iTree α = Null | Node α (iTree α) (iTree α).
I E.g.

Node 3 (Node 2 Null Null) (Node 1 Null (Node 4 Null Null)).
I data eTree α = Tip a | Bin (eTree α) (eTree α).

I E.g. Bin (Bin (Tip 1) (Tip 2)) (Tip 3).
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Some Notes on Notations

I In this lecture we use a Haskell-like notation. In OCaml, the
function fact is defined as:

let rec fact = function
| 0 -> 1
| n -> n * fact(n - 1);;

I The two types for trees would be defined as:

type ’a iTree =
Null | Node of ’a * ’a iTree * ’a iTree

type ’a eTree =
Tip of ’a | Bin of ’a eTree * ’a eTree

I Lists are denoted by 1::(2::(3::[])) = [1;2;3].
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Functional Programming

I In program derivation, programs are entities we manipulate.
Procedural programs (e.g. C programs), however, are difficult
to manipulate because they lack nice properties.

I In C, we do not even have f (3) + f (3) = 2× f (3).
I In functional programming, programs are viewed as

mathematical functions that can be reasoned algebraically.
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Sum and Map

I The function sum adds up the numbers in a list.

sum :: [Int]→ Int
sum [ ] = 0
sum (x : xs) = x + sum xs

I E.g. sum [7, 9, 11] = 27.

I The function map f takes a list and builds a new list by
applying f to every item in the input.

map :: (α→ β)→ [α]→ [β]
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

I E.g. map square [3, 4, 6] = [9, 16, 36].
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Sum of Squares
I Given a sequence a1,a2,. . . ,an, compute a2

1 + a2
2 + . . . + a2

n.
Specification: sumsq = sum ·map square.

I The spec. builds an intermediate list. Can we eliminate it?
I The input is either empty or not. When it is empty:

sumsq [ ]

= { Definition of sumsq }
(sum ·map square) [ ]

= { Function composition }
sum (map square [ ])

= { Definition of map }
sum [ ]

= { Definition of sum }
0
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Sum of Squares, the Inductive Case
I Consider the case when the input is not empty:

sumsq (x : xs)

= { Definition of sumsq }
sum (map square (x : xs))

= { Definition of map }
sum (square x : map square xs)

= { Definition of sum }
square x + sum (map square xs)

= { Definition of sumsq }
square x + sumsq xs

We have therefore constructed a recursive definition of sumsq:
sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs
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Unfold/Fold Transformation

I Perhaps the most intuitive, yet still handy, style of functional
program derivation.

I Keep unfolding the definition of functions, apply necessary
rules, and finally fold the definition back.

I It works under the assumption that a function satisfying the
derived equations is the function defined by the equations.

I In this course, we use the terms “fold” and “unfold” for
another purpose. Therefore we refer to this technique as the
expand/reduce transformation.
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Proving Auxiliary Properties

I Our pattern of program derivation:

expression

= {some property}
. . .

I Some of the properties are rather obvious. Some needs to be
proved separately.

I In this section we will practice perhaps the most fundamental
proof technique, which is still very useful.
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The Induction Principle

I Recall the so called “mathematical induction”. To prove that
a property p holds for all natural numbers, we need to show:

I that p holds for 0, and
I if p holds for n, it holds for n + 1 as well.

I We can do so because the set of natural numbers is an
inductive type.

I The type of finite lists is an inductive types too. Therefore the
property p holds for all finite lists if

I property p holds for [ ], and
I if p holds for xs, it holds for x : xs as well.
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Appending Two Lists

I The function (++) appends two lists into one.

(++) :: [a]→ [a]→ [a]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

I E.g.

[1, 2] ++ [3, 4]
= 1 : ([2] ++ [3, 4])
= 1 : (2 : ([ ] ++ [3, 4]))
= 1 : (2 : [3, 4])
= [1, 2, 3, 4]

I The time it takes to compute xs ++ ys is proportional to the
length of x .
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Sum Distributes into Append

Example: let us show that sum (xs ++ ys) = sum xs + sum ys, for
finite lists xs and ys.
Case [ ]:

sum [ ] + sum ys

= { Definition of sum }
0 + sum ys

= { Arithmetic }
sum ys

= { By definition of (++), [ ] ++ ys = ys }
sum ([ ] ++ ys)

26 / 101
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Sum Distributes into Append, the Inductive Case
Case x : xs:

sum (x : xs) + sum ys

= { Definition of sum}
(x + sum xs) + sum ys

= { (+) is associative: (a + b) + c = a + (b + c) }
x + (sum xs + sum ys)

= { Induction Hypothesis }
x + sum(xs ++ ys)

= { Definition of sum }
sum(x : (xs ++ ys))

= { Definition of (++) }
sum((x : xs) ++ ys)
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Some Properties to be Proved

The following properties are left as exercises for you to prove. We
will make use of some of them in the lecture.

I Concatenation is associative:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs).
(Note that the right-hand side is in general faster than the
left-hand side.)

I The function concat concatenates a list of lists:
concat [ ] = [ ],
concat (xs : xss) = xs ++ concat xss.

E.g. concat [[1, 2], [3, 4], [5]] = [1, 2, 3, 4, 5]. We have
sum · concat = sum ·map sum.

28 / 101



Prelude
Preliminaries

The Expand/Reduce Transformation

Example: Sum of Squares
Proof by Induction
Accumulating Parameter
Tupling

Inductive Proofs on Trees

Recall the datatype:

data iTree α = Null | Node α (iTree α) (iTree α)

What is the induction principle for iTree?
A property p holds for all finite iTrees if . . .

I the property p holds for Null , and

I for all a,t,and u, if p holds for t and u, then p holds for
Node a t u.
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Example: Reversing a List

I The function reverse is defined by:

reverse [ ] = [ ],
reverse (x : xs) = reverse xs ++ [x ].

E.g.
reverse [1, 2, 3, 4] = ((([ ]++[4])++[3])++[2])++[1] = [4, 3, 2, 1].

I But how about its time complexity? Since (++) is O(n), it
takes O(n2) time to revert a list this way.

I Can we make it faster?
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Introducing an Accumulating Parameter

I Let us consider a generalisation of reverse. Define:

rcat xs ys = reverse xs ++ ys.

I If we can construct a fast implementation of rcat, we can
implement reverse by:

reverse xs = rcat xs [ ].
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Reversing a List, Base Case

Let us use our old trick of Expand/Reduce transformation.
Consider the case when xs is [ ]:

rcat [ ] ys

= { definition of rcat }
reverse [ ] ++ ys

= { definition of reverse }
[ ] ++ ys

= { definition of (++) }
ys
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Reversing a List, Inductive Case

Case x : xs:

rcat (x : xs) ys

= { definition of rcat }
reverse (x : xs) ++ ys

= { definition of reverse }
(reverse xs ++ [x ]) ++ ys

= { since (xs ++ ys) ++ zs = xs ++ (ys ++ zs) }
reverse xs ++ ([x ] ++ ys)

= { definition of rcat }
rcat xs (x : ys)
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Linear-Time List Reversal

I We have therefore constructed an implementation of rcat:

rcat [ ] ys = ys
rcat (x : xs) ys = rcat xs (x : ys)

which runs in linear time!

I A generalisation of reverse is easier to implement than reverse
itself? How come?

I If you try to understand rcat operationally, it is not difficult to
see how it works.

I The partially reverted list is accumulated in ys.
I The initial value of ys is set by reverse xs = rcat xs [ ].
I Hmm... it is like a loop, isn’t it?
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Tracing Reverse

reverse [1, 2, 3, 4]
= rcat [1, 2, 3, 4] [ ]
= rcat [2, 3, 4] [1]
= rcat [3, 4] [2, 1]
= rcat [4] [3, 2, 1]
= rcat [ ] [4, 3, 2, 1]
= [4, 3, 2, 1]

reverse xs = rcat xs [ ]
rcat [ ] ys = ys
rcat (x : xs) ys = rcat xs (x : ys)

xs, ys ← XS , [ ];
while xs 6= [ ] do

xs, ys ← tl xs, hd xs : ys;
return ys;
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Tail Recursion

I Tail recursion: a special case of recursion in which the last
operation is the recursive call.

f x1 . . . xn = {base case}
f x1 . . . xn = f x ′

1 . . . x ′
n

I To implement general recursion, we need to keep a stack of
return addresses. For tail recursion, we do not need such a
stack.

I Tail recursive definitions are like loops. Each xi is updated to
x ′
i in the next iteration of the loop.

I The first call to f sets up the initial values of each xi .
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Accumulating Parameters

I To efficiently perform a computation (e.g. reverse xs), we
introduce a generalisation with an extra parameter, e.g.:

rcat xs ys = reverse xs ++ ys.

I Try to derive an efficient implementation of the generalised
function. The extra parameter is usually used to
“accumulate” some results, hence the name.

I To make the accumulation work, we usually need some kind of
associativity.

I A technique useful for, but not limited to, constructing
tail-recursive definition of functions.
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Loop Invariants

To implement reverse, we introduce rcat such that:

rcat xs ys = reverse xs ++ ys. (1)

Functional:
We initialise rcat by:

reverse xs = rcat xs [ ],

and try to derive a faster version of rcat
satisfying (1).

rcat [ ] ys = ys
rcat (x : xs) ys = rcat xs (y : ys)

Procedural:
We initialise the loop, and try to derive a
loop body maintaining a loop invariant
related to (1).

xs, ys ← XS , [ ];
{reverse XS = reverse xs ++ ys}
while xs 6= [ ] do

xs, ys ← tl xs, hd xs : ys;
return ys;
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Accumulating Parameter: Another Example

I Recall the “sum of squares” problem:

sumsq [ ] = 0
sumsq (x : xs) = square x + sumsq xs

The program still takes linear space (for the stack of return
addresses). Let us construct a tail recursive auxiliary function.

I Introduce ssp xs n =

sumsq xs + n

.

I Initialisation: sumsq xs =

ssp xs 0

.

I Construct ssp:

ssp [ ] n = 0 + n = n
ssp (x : xs) n = (square x + sumsq xs) + n

= sumsq xs + (square x + n)
= ssp xs (square x + n)
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Notes on Compatibility with OCaml

Some of the functions we’ve mentioned, or will mention, have their
equivalents defined in module List:

val hd : ’a list -> ’a
val tl : ’a list -> ’a list
val length : ’a list -> int
val append : ’a list -> ’a list -> ’a list
val concat : ’a list list -> ’a list
val map : (’a -> ’b) -> ’a list -> ’b list
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Steep Lists

I A steep list is a list in which every element is larger than the
sum of those to its right.

steep [ ] = true
steep (x : xs) = steep xs ∧ x > sum xs

I The definition above, if executed directly, is an O(n2)
program. Can we do better?

I Just now we learned to construct a generalised function which
takes more input. This time, we try the dual technique: to
construct a function returning more results.
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Generalise by Returning More

I Recall that fst (a, b) = a and snd (a, b) = b.

I It is hard to quickly compute steep alone. But if we define

steepsum xs = (steep xs, sum xs),
and manage to synthesise a quick definition of steepsum, we
can implement steep by steep = fst · steepsum.

I We again proceed by case analysis. Trivially,

steepsum [ ] = (true, 0).
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Deriving for the Non-Empty Case
For the case for non-empty inputs.

steepsum (x : xs)

= { definition of steepsum }
(steep (x : xs), sum (x : xs))

= { definitions of steep and sum }
(steep xs ∧ x > sum xs, x + sum xs)

= { extracting sub-expressions involving xs }
let (b, y) = (steep xs, sum xs)
in (b ∧ x > y , x + y)

= { definition of steepsum }
let (b, y) = steepsum xs
in (b ∧ x > y , x + y)
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Synthesised Program

I We have thus come up with:

steep = fst · steepsum
steepsum [ ] = (true, 0)
steepsum (x : xs) = let (b, y) = steepsum xs

in (b ∧ x > y , x + y)
which runs in O(n) time.

I Again we observe the phenomena that a more general
function is easier to implement.

I It is actually common in indutive proofs, too. To prove a
theorem, we sometimes have to generalise it so that we have a
stronger inductive hypothesis.

I Now that we are talking about inductive proofs again, let us
see a general pattern for induction.
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Summary for the First Day
I Program derivation: constructing programs from their

specifications, through formal reasoning.
I Expand/reduce transformation: the most fundamental kind of

program derivation — expand the definitions of functions, and
reduce them back when necessary.

I Most of the properties we need during the reasoning, for this
course, can be proved by induction.

I Accumulating parameters: sometimes a more general program
is easier to construct.

I Sometimes used to construct loops. Closely related to loop
invariants in procedural program derivation.

I Usually relies on some associtivity property to work.

I Tupling: a dual technique often used to generalise a function
so that we can derive a quicker recursive definition.

I Like it so far? More fun tomorrow!
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From Yesterday. . .

I Expand/reduce transformation: the most basic kind of
program derivation. Expand the definitions of functions, and
reduce them back when necessary.

I Proof by induction.

I Accumulating parameter: a handy technique for, among other
purposes, deriving tail recursive functions.

I Tupling: a dual technique often used to generalise a function
so that we can derive a quicker recursive definition.

I Today we will be dealing with slightly abstract concepts.
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More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
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A Common Pattern We’ve Seen Many Times. . .

I
sum [ ] = 0
sum (x : xs) = x + sum xs

I
length [ ] = 0
length (x : xs) = 1 + length xs

I
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

I This pattern is extracted and called foldr :

foldr f e [ ] = e,
foldr f e (x : xs) = f x (foldr f e xs).
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Replacing Constructors

I
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)

I One way to look at foldr (⊕) e is that it replaces [ ] with e and
(:) with (⊕).

foldr (⊕) e [1, 2, 3, 4]
= foldr (⊕) e (1 : (2 : (3 : (4 : [ ]))))
= 1⊕ (2⊕ (3⊕ (4⊕ e)))

I sum = foldr (+) 0

I length = foldr (λx n.1 + n) 0

I map f = foldr (λx xs.f x : xs) [ ]
I One can see that id = foldr (:) [ ].
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Notes on Notation

I Both f x y and x ⊕ y denote a function applied to x and y
successively. We use the prefix and infix notation alternatively
whenever appropriate.

I The notation λx .expr denotes an anonymous function. In
OCaml it may be written fun x -> expr.
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Notes on Compatibility with OCaml

In module List there is a function fold right, but the order of
arguments is different. Our foldr can be defined by:

let rec foldr f a lst = match lst with
| [] -> a
| x::xs -> f x (foldr f a xs);;

Some example usage:

let sum = foldr (fun x y -> x + y) 0;;
let len = foldr (fun x y -> 1 + y) 0;;
let map f = foldr (fun x lst -> (f x)::lst) [];;
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Some Trivial Folds on Lists
I Function max returns the maximum element in a list:

I
max [ ] = -∞,
max (x : xs) = x ↑ max xs.

I max = foldr (↑) -∞.

I Function prod returns the product of a list:

I
prod [ ] = 1,
prod (x : xs) = x × prod xs.

I prod = foldr (×) 1.

I Function and returns the conjunction of a list:

I
and [ ] = true,
and (x : xs) = x ∧ and xs.

I and = foldr (∧) true.

I Lets emphasise again that id on lists is a fold:

I
id [ ] = [ ],
id (x : xs) = x : id xs.

I id = foldr (:) [ ].
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id (x : xs) = x : id xs.

I id = foldr (:) [ ].
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Why Folds?

I The same reason we kept talking about patterns in design.

I Control abstraction, procedure abstraction, data
abstraction,. . . can programming patterns be abstracted too?

I Program structure becomes an entity we can talk about,
reason about, and reuse.

I We can describe algorithms in terms of fold, unfold, and other
recognised patterns.

I We can prove properties about folds,
I and apply the proved theorems to all programs that are folds,

either for compiler optimisation, or for mathematical reasoning.

I Among the theorems about folds, the most important is
probably the fold-fusion theorem.
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The Fold-Fusion Theorem

The theorem is about when the composition of a function and a
fold can be expressed as a fold.

Theorem (Fold-Fusion)

Given f :: α→ β → β, e :: β, h :: β → γ, and g :: α→ γ → γ,
we have:

h · foldr f e = foldr g (h e),

if h (f x y) = g x (h y) for all x and y .
For program derivation, we are usually given h, f , and e, from
which we have to construct g .
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Tracing an Example
Let us try to get an intuitive understand of the theorem.

h (foldr f e [a, b, c ])
= { definition of foldr }

h (f a (f b (f c e)))

= { since h (f x y) = g x (h y) }
g a (h (f b (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (h (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (g c (h e)))

= { definition of foldr }
foldr g (h e) [a, b, c ]

59 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Tracing an Example
Let us try to get an intuitive understand of the theorem.

h (foldr f e [a, b, c ])
= { definition of foldr }

h (f a (f b (f c e)))
= { since h (f x y) = g x (h y) }

g a (h (f b (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (h (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (g c (h e)))

= { definition of foldr }
foldr g (h e) [a, b, c ]

59 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Tracing an Example
Let us try to get an intuitive understand of the theorem.

h (foldr f e [a, b, c ])
= { definition of foldr }

h (f a (f b (f c e)))
= { since h (f x y) = g x (h y) }

g a (h (f b (f c e)))
= { since h (f x y) = g x (h y) }

g a (g b (h (f c e)))

= { since h (f x y) = g x (h y) }
g a (g b (g c (h e)))

= { definition of foldr }
foldr g (h e) [a, b, c ]

59 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Tracing an Example
Let us try to get an intuitive understand of the theorem.

h (foldr f e [a, b, c ])
= { definition of foldr }

h (f a (f b (f c e)))
= { since h (f x y) = g x (h y) }

g a (h (f b (f c e)))
= { since h (f x y) = g x (h y) }

g a (g b (h (f c e)))
= { since h (f x y) = g x (h y) }

g a (g b (g c (h e)))

= { definition of foldr }
foldr g (h e) [a, b, c ]

59 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Tracing an Example
Let us try to get an intuitive understand of the theorem.

h (foldr f e [a, b, c ])
= { definition of foldr }

h (f a (f b (f c e)))
= { since h (f x y) = g x (h y) }

g a (h (f b (f c e)))
= { since h (f x y) = g x (h y) }

g a (g b (h (f c e)))
= { since h (f x y) = g x (h y) }

g a (g b (g c (h e)))
= { definition of foldr }

foldr g (h e) [a, b, c ]

59 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Sum of Squares, Again

I Consider sum ·map square again. This time we use the fact
that map f = foldr (mf f ) [ ], where mf f x xs = f x : xs.

I sum ·map square is a fold, if we can find a ssq such that
sum (mf square x xs) = ssq x (sum xs). Let us try:

sum (mf square x xs)
= { definition of mf }

sum (square x : xs)
= { definition of sum }

square x + sum xs

= { let ssq x y = square x + y }
ssq x (sum xs)

Therefore, sum ·map square = foldr ssq 0.
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More on Folds and Fold-fusion

I Compare the proof with the one yesterday. They are
essentially the same proof.

I Fold-fusion theorem abstracts away the common parts in this
kind of inductive proofs, so that we need to supply only the
“important” parts.

I Tupling can be seen as a kind of fold-fusion. The derivation of
steepsum, for example, can be seen as fusing:

steepsum · id = steepsum · foldr (:) [ ].
I Not every function can be expressed as a fold. For example, tl

is not a fold!
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Longest Prefix

I The function call takeWhile p xs returns the longest prefix of
xs that satisfies p:

takeWhile p [ ] = [ ],
takeWhile p (x : xs) = if p x then x : takeWhile p xs

else [ ].
I E.g. takeWhile (≤ 3) [1, 2, 3, 4, 5] = [1, 2, 3].
I It can be defined by a fold:

takeWhile p = foldr (tke p) [ ],
tke p x xs = if p x then x : xs else [ ].

I Its dual, dropWhile (≤ 3) [1, 2, 3, 4, 5] = [4, 5], is not a fold.
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All Prefixes

I The function inits returns the list of all prefixes of the input
list:

inits [ ] = [[ ]],
inits (x : xs) = [ ] : map (x : ) (inits xs).

I E.g. inits [1, 2, 3] = [[ ], [1], [1, 2], [1, 2, 3]].
I It can be defined by a fold:

inits = foldr ini [[ ]],
ini x xss = [ ] : map (x : ) xss.
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All Suffixes

I The function tails returns the list of all suffixes of the input
list:

tails [ ] = [ ],
tails (x : xs) = let (ys : yss) = tails xs

in (x : ys) : ys : yss.

I E.g. tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], [ ]].
I It can be defined by a fold:

tails = foldr til [[ ]],
til x (ys : yss) = (x : ys) : ys : yss.
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Scan

I scanr f e = map (foldr f e) · tails.
I E.g.

scanr (+) 0 [1, 2, 3]
= map sum (tails [1, 2, 3])
= map sum [[1, 2, 3], [2, 3], [3], [ ]]
= [6, 5, 3, 0]

I Of course, it is slow to actually perform map (foldr f e)
separately. By fold-fusion, we get a faster implementation:

scanr f e = foldr (sc f ) [e],
sc f x (y : ys) = f x y : y : ys.
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Specifying Maximum Segment Sum

I Finally we have introduced enough concepts to tackle the
maximum segment sum problem!

I A segment can be seen as a prefix of a suffix.

I The function segs computes the list of all the segments.

segs = concat ·map inits · tails.
I Therefore, mss is specified by:

mss = max ·map sum · segs.
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The Derivation!

We reason:

max ·map sum · concat ·map inits · tails

= { since map f · concat = concat ·map (map f ) }
max · concat ·map (map sum) ·map inits · tails

= { since max · concat = max ·map max }
max ·map max ·map (map sum) ·map inits · tails

= { since map f ·map g = map (f · g) }
max ·map (max ·map sum · inits) · tails

Recall the definition scanr f e = map (foldr f e) · tails. If we can
transform max ·map sum · inits into a fold, we can turn the
algorithm into a scan, which has a faster implementation.

69 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

The Derivation!

We reason:

max ·map sum · concat ·map inits · tails
= { since map f · concat = concat ·map (map f ) }

max · concat ·map (map sum) ·map inits · tails

= { since max · concat = max ·map max }
max ·map max ·map (map sum) ·map inits · tails

= { since map f ·map g = map (f · g) }
max ·map (max ·map sum · inits) · tails

Recall the definition scanr f e = map (foldr f e) · tails. If we can
transform max ·map sum · inits into a fold, we can turn the
algorithm into a scan, which has a faster implementation.

69 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

The Derivation!

We reason:

max ·map sum · concat ·map inits · tails
= { since map f · concat = concat ·map (map f ) }

max · concat ·map (map sum) ·map inits · tails
= { since max · concat = max ·map max }

max ·map max ·map (map sum) ·map inits · tails

= { since map f ·map g = map (f · g) }
max ·map (max ·map sum · inits) · tails

Recall the definition scanr f e = map (foldr f e) · tails. If we can
transform max ·map sum · inits into a fold, we can turn the
algorithm into a scan, which has a faster implementation.

69 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

The Derivation!

We reason:

max ·map sum · concat ·map inits · tails
= { since map f · concat = concat ·map (map f ) }

max · concat ·map (map sum) ·map inits · tails
= { since max · concat = max ·map max }

max ·map max ·map (map sum) ·map inits · tails
= { since map f ·map g = map (f · g) }

max ·map (max ·map sum · inits) · tails

Recall the definition scanr f e = map (foldr f e) · tails. If we can
transform max ·map sum · inits into a fold, we can turn the
algorithm into a scan, which has a faster implementation.

69 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Maximum Prefix Sum
Concentrate on max ·map sum · inits:

max ·map sum · inits

= { definition of init, ini x xss = [ ] : map (x : ) xss }
max ·map sum · foldr ini [[ ]]

= { fold fusion, see below }
max · foldr zplus [0]

The fold fusion works because:

map sum (ini x xss)
= map sum ([ ] : map (x : ) xss)
= 0 : map (sum · (x : )) xss

= 0 : map (x+) (map sum xss)

Define zplus x xss = 0 : map (x+) xss.
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Maximum Prefix Sum, 2nd Fold Fusion
Concentrate on max ·map sum · inits:

max ·map sum · inits

= { definition of init, ini x xss = [ ] : map (x : ) xss }
max ·map sum · foldr ini [[ ]]

= { fold fusion, zplus x xss = 0 : map (x+) xss }
max · foldr zplus [0]

= { fold fusion, let zmax x y = 0 ↑ (x + y) }
foldr zmax 0

The fold fusion works because ↑ distributes into (+):

max (0 : map (x+) xs)
= 0 ↑ max (map (x+) xs)
= 0 ↑ (x + max xs)
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Back to Maximum Segment Sum
We reason:

max ·map sum · concat ·map inits · tails
= { since map f · concat = concat ·map (map f ) }

max · concat ·map (map sum) ·map inits · tails
= { since max · concat = max ·map max }

max ·map max ·map (map sum) ·map inits · tails
= { since map f ·map g = map (f · g) }

max ·map (max ·map sum · inits) · tails

= { reasoning in the previous slides }
max ·map (foldr zmax 0) · tails

= { introducing scanr }
max · scanr zmax 0
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Maximum Segment Sum in Linear Time!

I We have derived mss = max · scanr zmax 0, where
zmax x y = 0 ↑ (x + y).

I The algorithm runs in linear time, but takes linear space.

I A tupling transformation eliminates the need for linear space.

mss = fst ·maxhd · scanr zmax 0

where maxhd xs = (max xs, hd xs). We omit this last step in
the lecture.

I The final program is mss = fst · foldr step (0, 0), where
step x (m, y) = ((0 ↑ (x + y)) ↑ m, 0 ↑ (x + y)).
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Folds on Trees

I Folds are not limited to lists. In fact, every datatype with
so-called “regular based functors” induces a fold.

I Recall some datatypes for trees:

data iTree α = Null | Node a (iTree α) (iTree α);
data eTree α = Tip a | Bin (eTree α) (eTree α).

I The fold for iTree, for example, is defined by:

foldiT f e Null = e,
foldiT f e (Node a t u) = f a (foldiT f e t) (foldiT f e u).

I The fold for eTree, is given by:

foldeT f g (Tip x) = g x ,
foldeT f g (Bin t u) = f (foldeT f g t) (foldeT f g u).
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Some Simple Functions on Trees

I to compute the size of an iTree:

sizeiTree = foldiT (λx m n.m + n + 1) 0.

I To sum up labels in an eTree:

sumeTree = foldeT (+) id .

I To compute a list of all labels in an iTree and an eTree:

flatteniT = foldiT (λx xs ys.xs ++ [x ] ++ ys) [ ],
flatteneT = foldeT (++) (λx .[x ]).
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Unfolds Generate Data Structures

I While folds consumes a data structure, unfolds builds data
structures.

I Unfold on lists is defined by:

unfoldr p f s = if p s then [ ] else
let (x , s ′) = f s in x : unfoldr p f s ′.

The value s is a “seed” to generate a list with. Function p
checkes the seed to determines whether to stop. If not,
function f is used to generate an element and the next seed.
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Some Useful Functions Defined as Unfolds

I For brevity let us introduce the “split” notation. Given
functions f :: α→ β and g :: α→ γ, 〈f , g〉 :: α→ (β, γ) is a
function defined by:

〈f , g〉 a = (f a, g a).
I The function call fromto m n builds a list [n, n + 1, . . . ,m]:

fromto m = unfoldr (≥ m) 〈id , (1+)〉.
I The function tails+ is like tails, but returns non-empty tails

only:

tails+ = unfoldr null 〈id , tl〉,
where null xs yields true iff xs = [ ].
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Unfolds May Build Infinite Data Structures

I The function call from n builds the infinitely long list
[n, n + 1, . . .]:

from = unfoldr (const false) 〈id , (1+)〉.
I More generally, iterate f x builds an infinitely long list

[x , f x , f (f x) . . .]:
iterate f = unfoldr (const false) 〈id , f 〉.

We have from = iterate (1+).
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Merging as an Unfold

I Given two sorted lists (xs, ys), the call merge (xs, ys) merges
them into one sorted list:

merge = unfoldr null2 mrg
null2 (xs, ys) = null xs ∧ null ys
mrg ([ ], y : ys) = (y , ([ ], ys))
mrg (x : xs, [ ]) = (x , (xs, [ ]))
mrg (x : xs, y : ys) = if x ≤ y then (x , (xs, y : ys))

else (y , (x : xs, ys))

81 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

Unfold on Lists
Folds v.s. Unfolds

Folds
The Fold-Fusion Theorem
More Useful Functions Defined as Folds
Finally, Solving Maximum Segment Sum
Folds on Trees

Unfolds
Unfold on Lists
Folds v.s. Unfolds

Hylomorphism
A Museum of Sorting Algorithms
Hylomorphism and Recursion

Wrapping Up

82 / 101



Folds
Unfolds

Hylomorphism
Wrapping Up

Unfold on Lists
Folds v.s. Unfolds

Folds and Unfolds

I Folds and unfolds are dual concepts. Folds consume data
structure, while unfolds build data structures.

I List constructors have types: (:) :: α→ [α]→ [α] and
[ ] :: [α]; in fold f e, the arguments have types:
f :: α→ β → β and e :: β.

I List deconstructors have types: 〈hd , tl〉 :: [α]→ (α, [α]); in
unfoldr p f , the argument f has type β → (α, β).

I They do not look exactly symmetrical yet. But that is just
because our notations are not general enough.
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Folds v.s. Unfolds

I Folds are defined on inductive datatypes. All inductive
datatypes are finite, and emit inductive proofs. Folds basically
captures induction on the input.

I As we have seen, unfolds may generate infinite data
structures.

I They are related to coinductive datatypes.
I Proof by induction does not (trivially) work for coinductive

data in general. We need to instead use coinductive proof.
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A Sketch of A Coinductive Proof

To prove that map f · iterate f = iterate f (f x), we show that for
all possible observations, the lhs equals the rhs.

I hd ·map f · iterate f = hd · iterate f (f x). Trivial.

I tl ·map f · iterate f = tl · iterate f (f x):
tl (map f (iterate f x))

= tl (f x : map f (iterate f (f x)))
= {hypothesis}

tl (f x : iterate f (f (f x)))
= tl (iterate f (f x))

The hypothesis looks a bit shaky: isn’t it circular reasoning?
We need to describe it in a more rigourous setting to establish
its validity. This is out of the scope of this lecture.
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Unfolds on Trees

Unfolds can also be extended to trees. For internally labelled
binary trees we define:

unfoldiT p f s = if p s thenNull else
let (x , s1, s2) = f s
inNode x (unfoldiT p f s1)

(unfoldiT p f s2).

And for externally labelled binary trees we define:

unfoldeT p f g s = if p s thenTip (g s) else
let (s1, s2) = f s
inBin (unfoldeT p f g s1)

(unfoldeT p f g s2).
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Unflattening a Tree

I Recall the function flatteneT :: eTree α→ [α], defined as a
fold, flattening a tree into a list. Let us consider doing the
reverse.

I Assume that we have the following functions:
I single xs = true iff xs contains only one element.
I half :: [α]→ ([α], [α]) split a list of length n into two lists of

lengths roughly half of n.

I The function unflatteneT builds a tree out of a list:
unflattenT :: [α]→ eTree [α],
unflattenT = unfoldeT single half id .
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Mergesort as a Hylomorphism

I Recall the function merge merging a pair of sorted lists into
one sorted list. Assume that it has a curried variant mergec .

I What does this function do?

msort = foldeT mergec id · unflatteneT

I This is mergesort!
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Quicksort as a Hylomorphism

I Let partition be defined by:

partition (x : xs) = (x , filter (≤ x) xs, filter (> x) xs).
I Recall the function flatteniT flattening an iTree, defined by a

fold.

I Quicksort can be defined by:

qsort = flatteniT · unfoldiT null partition.

I Compare and notice some symmetricity:

qsort = flatteniT · partitioniT ,
msort = mergeeT · unflatteneT .

Both are defined as a fold after an unfold.
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Insertion Sort and Selection Sort

I Insertion sort can be defined by an fold:

isort = foldr insert [ ],
where insert is specified by

insert x xs = takeWhile (< x) xs ++ [x ] ++ dropWhile (< x) xs.

I Selection sort, on the other hand, can be naturally seen as an
unfold:

ssort = unfoldr null select,

where select is specified by

select xs = (max xs, xs − [max xs]).
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Hylomorphism

I A fold after an unfold is called a hylomorphism.

I The unfold phase expands a data structure, while the fold
phase reduces it.

I The divide-and-conquer pattern, for example, can be modelled
by hylomorphism on trees.

I To avoid generating an intermediate tree, the fold and the
unfold can be fused into a recursive function. E.g. let
hyloiT f e p g = foldiT f e · unfoldiT p g , we have

hyloiT f e p g s = if p s then e else
let (x , s1, s2) = g s
in f x (hyloiT f e p g s1)

(hyloiT f e p g s2).
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Hylomorphism and Recursion

Okay, we can express hylomorphisms using recursion. But let us
look at it the other way round.

I Imagine a programming in which you are not allowed to write
explicit recursion. You are given only folds and unfolds for
algebraic datatypes1.

I When you do need recursion, define a datatype capturing the
pattern of recursion, and split the recursion into a fold and an
unfold.

I This way, we can express any recursion by hylomorphisms!

Therefore, the hylomorphism is a concept as expressive as recursive
functions (and, therefore, the Turing machine) — if we are allowed
to have hylomorphisms, that is.

1Built from regular base functors, if that makes any sense.
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Folds Take Inductive Types

I So far, we have assumed that it is allowed to write
fold · unfold . However, let us not forget that they are defined
on different types!

I Folds takes inductive types.
I If we use folds only, everything terminates (a good property!).
I Recall that we assume a simple model of functions between

sets.
I On the downside, of course, not every program can be written

in terms of folds.
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Unfolds Return Coinductive Types

Unfolds returns coinductive types.

I We can generate infinite data structure.

I But if we are allowed to use only unfolds, every program still
terminates because there is no “consumer” to infinitely
process the infinite data.

I Not every program can be written in terms of unfolds, either.
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Hylomorphism, Recursion and Termination

If we allow fold · unfold ,

I we can now express every program computable by a Turing
machine.

I But, we need a model assuming that inductive types and
coinductive types coincide.

I Therefore, Folds must prepare to accept infinite data.

I Therefore, some programs may fail to terminate!

I Which means that partial functions have emerged.

I Recursive equations may not have unique solutions.

I And everything we believe so far are not on a solid basis
anymore!
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Termination, Type Theory, Semantics . . .

I One possible way out: instead of total function between sets,
we move to partial functions between complete partial orders,
and model what recursion means in this setting.

I There are also alternative approaches staying with functions
and sets, but talk about when an equation has a unique
solution.

I This is where all the following concepts and fields meet each
other: unique solutions, termination, type theory, semantics,
programming language theory, computability theory . . . and a
lot more!
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What have we learned?

I To derive programs from specification, functional
programming languages allows the expand/reduce
transformation.

I A number of properties we need can be proved by induction.
I To capture recurring patterns in reasoning, we move to

structural recursion: folds captures induction, while unfolds
capture coinduction.

I We gave lots of examples of the fold-fusion rule.
I Unfolds are equally important, unfortunately we ran out of

space.

I Hylomorphism is as expressive as you can get. However, it
introduces non-termination. And that opens rooms for plenty
of related research.
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Where to Go from Here?

I The Functional Pearls column in Journal of Functional
Proramming has lots of neat example of derivations.

I Procedural program derivation (basing on the weakest
precondition calculus) is another important branch we did not
talk about.

I There are plenty of literature about folds, and

I more recently, papers about unfolds and coinduction.

I You may be interested in theories about inductive types,
coinductive types, and datatypes in general,

I and semantics, denotational and operational,

I which may eventually lead you to category theory!
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