
FLOLAC ‘07
Type Systems

Exercise 2

1. The canonical non-terminating computation, (λx.xx) (λx.xx), was not

expressible in the simply-typed λ-calculus. Neither was the self-application
fragment, self ≣ λx.xx. But self is indeed typable in the polymorphic lambda
calculus. Please re-write self as a PLC expression.

2. Assume that we have
 type t ::= Top --super type of all types
 | Int --a primitive type

 | t → t --function types

 | {l1: t1, …, ln:tn} --record types

(a) How many different super types does {a: Top, b: Top} have?
(b) Can you find an infinite descending chain in the subtype relation using (1) as a
basis—that is, an infinite sequence of types S0, S1, etc. such that each Si+1 is a
subtype of Si ?
(c) What about an infinite ascending chain?

3. Java array types are covariant with respect to the types of array elements (i.e., if B

<: A, then B[] <: A[]). This can be useful for creating functions that operate on
many types of arrays. For example, the following function takes in an array and
swaps the first two elements in the array.

 1: public swapper (Object[] swappee){
 2: if (swappee.length > 1) {
 3: Object temp = swappee[0];
 4: swappee[0] = swappee[1];
 5: swappee[1] = temp;
 6: }
 7: }

This function can be used to swap the first two elements of an array of objects of any
type. The function works as is and does not produce any type errors at compile-time
or run-time.
(a) Suppose a is declared by Shape [] a to be an array of shapes, where Shape is

some class. Explain why covariance (if B <: A, then B[] <: A[]) allows the type
checker to accept the call swapper(a) at compile time.

(b) Suppose Shape[] a as in part (a). Explain why the call swapper(a) and execution
of the body of swapper will not cause a type error or exception at run time.

(c) However, this decision of adopting covariant type for arrays is not always safe.
Consider the following code fragment:

 (1) String [] ss = “aTestString”;
 (2) Object [] os = ss; // covariant subtyping
 (3) os[0] = new Integer(10);
 (4) int i = ss[0].length();

Given covariant arrays, the above code fragment compiles OK. But it would lead to a
runtime error. Please point out which line of code causes the error.
(d) To resolve the problem, Java uses run-time checks, as needed, to make sure that
certain operations respect the Java type discipline at run time (Line 3 in the above
code fragment). This also applies to the swapper function above. What run-time type
checks occur in the compiled code for the swapper function and where? List the line
number(s) of swapper and the check that occurs on that line.

