
 

An Alternate Presentation

A A B A A

111 At B A B Ma A

Tq now stable later
recursive types

0 10 x A q

Or e Aq
Typing judge parameterized

by mode



Modal FRP
x Age 0 qe8no stable

Or x Aok

0 x Aok te B ok Ote A Bok Otez Aok
Of Axe A Bok Ote e Bok

Ot e A stable Ote A ok 0 x Astablete Bok
Of boxle A ok Otlet box x e ine Bok

OD re Aok
Of e A stable

C 7 Delete the unstableO x Aok 01
Oix Astable OB a A stable

variables

O x A later On



Sums and Products
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The Later Modality
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Recursive Types
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What the Modalities Mean
A are stable values

They do not change as time passes
Stable variables are persistent
once available always available

A are As tomorrow

They are lazy and scheduled for the next tict
Later variables cannot be used now

but turn into ok variables in one tick
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Guarded Recursion

fix x A e is guarded recursion

It is a recursive definition but

the recursive call is only on the next tick

Works well with guarded recursive types



Guarded Recursive Types

Each recursive occurrence is later
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Example Streams
SCA E µ α Ax α

cons A SA SA
cons a as in a as

head SCA A tail SCA SA
head as IT out as tail as IT outses

map A B SA SB

map box f

fix r SA SB Axs SA
let y f heades
let sces tailes
cons y S res

The recursive call



More Examples
accum Scint int S int

accum ns acc

let box a promote acc

let box n aromote head ns

let Scots tailles
cons ath 8 accum xs ath

accum 0,1 2 0 0,1 3,6 10



More Examples
accum Scint int S int

accum ns acc

let box a promote n

let box n aromote head ns

let Scots tailles

of

7

I
a n used now and later

must be stable



More Examples
tails SCA SCSCA

tails as

let 8 as tail xs

cons Xs S tails as

tails 1 2 3 4 1,2 3,4
2,3 45
3,4516

j



Unfold for streams

unfold B X SCB

unfold box f x

let b 86 f x

cons b S unfold box f x



Switching

switch int SCA SCA SCA

switch box n as ys
if n o then
ys

else
let x xs as

let Cy Ys ys
cons x S switch box n t as ys



Switching

switch int SCA SCA SCA

switch box n as ys
if n o then
ys

else
let x xs as

let y head lys
let 8 ys tail ys
cons x S switch box n t as ys



Events
A stream SCA yields an infinite stream of As

some things happen once

E A µα At α ECA Done of A
Wait of ECA



Events
E A µ α At α ECA Done of A

Wait of ECA

return A ECA
return x Done at

bind E A A ECB ECB

bind Done x box f f x

bind Wait 86 box f Wait 8 binde box f



Events
E A µ α At α ECA Done of A

Wait of ECA

map A B EIA E B

map box f Done a Done ta

map box f Wait Sle Wait 8 map boxf e



Events
E A µ α At α ECA Done of A

Wait of ECA

select ECA ECB ECCA ECB ECA B

select Done a ez Done in Cased
select e Done b Done inzle b

select Wait see Wait Slei Wait S select eie



Recursion
Let ma A

self app A A A

selfapp f v

let box w X A out r in Variant
f 8 w in box w of the

fix A A A

fix box f

self app f in box g app

combinator



Operational Semantics

Values of A are lazily evaluated

We must preserve sharing for efficiency

We implement A with a memoized

code pointer



Operational Semantics
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Operational Semantics
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Operational Semantics
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Tick Semantics
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Conclusion

1 Modal logic arises from formal logic
2 Same rules can have many applications

3 Even very purist type theories

can have applied utility
4 Many more applications to be

discovered
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