
 

An Alternate Presentation

A A B A A

111 At B A B Ma A

Tq now stable later
recursive types

0 10 x A q

Or e Aq
Typing judge parameterized

by mode



Modal FRP
x Age 0 qe8no stable

Or x Aok

0 x Aok te B ok Ote A Bok Otez Aok
Of Axe A Bok Ote e Bok

Ot e A stable Ote A ok 0 x Astablete Bok
Of boxle A ok Otlet box x e ine Bok

OD re Aok
Of e A stable

C 7 Delete the unstableO x Aok 01
Oix Astable OB a A stable

variables

O x A later On



Sums and Products

Ote A ok Ote Aok Otez Bok

Otinite A Azok Ot e es

AxBokOte
AixAzokOt11ok Ortile Aiok

One A tAzok 0 A okte Bok 0 Azok tez Bok

Of case e in.sc e in x e B



The Later Modality

O r e A later
Or Sle A

Ore Aok 0 x A later tez B ok
Or let 86 e in ez B ok

re Aok
ore A later 1

O x Astable 0 x A stable
Opc A later 0 x A now

O x A now 0



Recursive Types

Or e Ema A a A ok Or e Ma A ok

Or in e Ma A ok Of outle Ma A α A ok

D
x A later te A ok
Of fix x A e A ok

Ma Axa Ax ma Axa Ax Ax Maxaxal



What the Modalities Mean
A are stable values

They do not change as time passes
Stable variables are persistent
once available always available

A are As tomorrow

They are lazy and scheduled for the next tict
Later variables cannot be used now

but turn into ok variables in one tick



Eta and

boot 1 1 true in false in C

promote boo boot

promote b case b
in box true
in box false

U definable for

U 114 414 4 A



Guarded Recursion

fix x A e is guarded recursion

It is a recursive definition but

the recursive call is only on the next tick

Works well with guarded recursive types



Guarded Recursive Types

Each recursive occurrence is later

SCA Ma Axx

SCA µα Axa
Ote S A

Or outle Ax SCA ix Axa α Axα

Ax µα Axa

Ax SCA



Example Streams
SCA E µ α Ax α

cons A SA SA
cons a as in a as

head SCA A tail SCA SA
head as IT out as tail as IT outses

map A B SA SB

map box f

fix r SA SB Axs SA
let y f heades
let sces tailes
cons y S res

The recursive call



More Examples
accum Scint int S int

accum ns acc

let box a promote acc

let box n aromote head ns

let Scots tailles
cons ath 8 accum xs ath

accum 0,1 2 0 0,1 3,6 10



More Examples
accum Scint int S int

accum ns acc

let box a promote n

let box n aromote head ns

let Scots tailles

of

7

I
a n used now and later

must be stable



More Examples
tails SCA SCSCA

tails as

let 8 as tail xs

cons Xs S tails as

tails 1 2 3 4 1,2 3,4
2,3 45
3,4516

j



Unfold for streams

unfold B X SCB

unfold box f x

let b 86 f x

cons b S unfold box f x



Switching

switch int SCA SCA SCA

switch box n as ys
if n o then
ys

else
let x xs as

let Cy Ys ys
cons x S switch box n t as ys



Switching

switch int SCA SCA SCA

switch box n as ys
if n o then
ys

else
let x xs as

let y head lys
let 8 ys tail ys
cons x S switch box n t as ys



Events
A stream SCA yields an infinite stream of As

some things happen once

E A µα At α ECA Done of A
Wait of ECA



Events
E A µ α At α ECA Done of A

Wait of ECA

return A ECA
return x Done at

bind E A A ECB ECB

bind Done x box f f x

bind Wait 86 box f Wait 8 binde box f



Events
E A µ α At α ECA Done of A

Wait of ECA

map A B EIA E B

map box f Done a Done ta

map box f Wait Sle Wait 8 map boxf e



Events
E A µ α At α ECA Done of A

Wait of ECA

select ECA ECB ECCA ECB ECA B

select Done a ez Done in Cased
select e Done b Done inzle b

select Wait see Wait Slei Wait S select eie



Recursion
Let ma A

self app A A A

selfapp f v

let box w X A out r in Variant
f 8 w in box w of the

fix A A A

fix box f

self app f in box g app

combinator



Operational Semantics

Values of A are lazily evaluated

We must preserve sharing for efficiency

We implement A with a memoized

code pointer



Operational Semantics

Store 0 I 0 l now 10 lie later 10 l null

Values v C r r l in V Ax A e in

I box v

Ils
Locations are A values

o e o r



Operational Semantics
o v coir

co e 440 visual coie who'iv
0 Tile Lo Vi Co in e Ico in v

Loie IColiniv o ride H Lo v

oicasele.in iei ULo v

o e cojax.es co ez o v o uncle Lo v

o e g V20 v

Coie Ito'iv sie who incus

Coin e o incu o outle o v

Oi fixxe a e Coli
Gifixx e O v



Operational Semantics

Tie H o v oie o box v o tube e Go v

o box el o box v 5 let box x e in e Co

o f e H to l elater l

cried o 17 o l acted r v

o let 8k e ine r v

l nower

co 1e riv



Tick Semantics

5 o

0 o co e Hco v

15 lie later o I D now

o

b livnow to's email

o

6,1 null cost null
Guarantees
space leak Proving type
freedom safety needs

another logical
relation



Conclusion

1 Modal logic arises from formal logic
2 Same rules can have many applications

3 Even very purist type theories

can have applied utility
4 Many more applications to be

discovered



button click Data unit unit

7 Data unit

7 n DataA A p
i A Data


